【題目】(2015福建)已知函數
=
.
(1)求函數的單調遞增區間;
(2)證明:當x>1時,;
(3)確定實數k的所有可能取值,使得存在,當
時,恒有
>
.
【答案】
(1)
;
(2)
詳見解析;
(3)
.
【解析】(1),x
. 由
>0得
,解得0<x<
.故
的單調遞增區間是
。
(2)令=
,x
,則有
=
.當x
時,
<0, 所以
在[1,+
)上單調遞減,故x>1時,
<
=0,即當x>1時,
;
(3)由(2)知,當k=1時,不存在滿足題意。 當k>1時,有
<
,則
<
,從而不存在
滿足題意 。 當k<1時,令G(x)=
-
,x
. 則有
=
=
. 由
=0得,
, 解得
<0,
>1. 當x
時,
=0,即
>
,綜上k的取值范圍是
.
【考點精析】關于本題考查的函數單調性的判斷方法,需要了解單調性的判定法:①設x1,x2是所研究區間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】(2015·四川)如圖,四邊形ABCD和ADPQ均為正方形,它們所在的平面互相垂直,動點M在線段PQ上,E、F分別為AB、BC的中點。設異面直線EM與AF所成的角為,則cos
的最大值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體ABCDE中,四邊形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分別是線段BE,DC的中點.
(Ⅰ)求證:BE//平面ADE ;
(Ⅱ)求平面AEF與平面BEC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·湖北)《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.
如圖,在陽馬P-ABCD中,側棱底面
,且
,過棱
的中點
,作
交
于點
,連接
(1)證明:平面
.試判斷四面體
是否為鱉臑,若是,寫出其每個面的直角(只需寫
出結論);若不是,說明理由;
(2)若面與面
所成二面角的大小為
, 求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】全網傳播的融合指數是衡量電視媒體在中國網民中影響了的綜合指標.根據相關報道提供的全網傳播2015年某全國性大型活動的“省級衛視新聞臺”融合指數的數據,對名列前20名的“省級衛視新聞臺”的融合指數進行分組統計,結果如表所示.求:(1)現從融合指數在[4,5)和[7,8]內的“省級衛視新聞臺”中隨機抽取2家進行調研,求至少有1家的融合指數在[7,8]的概率;(2)根據分組統計表求這20家“省級衛視新聞臺”的融合指數的平均數.
組號 | 分組 | 頻數 |
1 | [4,5) | 2 |
2 | [5,6) | 8 |
3 | [6,7) | 7 |
4 | [7,8] | 3 |
(1)現從融合指數在[4,5)和[7,8]內的“省級衛視新聞臺”中隨機抽取2家進行調研,求至少有1家的融合指數在[7,8]的概率;
(2)根據分組統計表求這20家“省級衛視新聞臺”的融合指數的平均數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業為了解下屬某部門對本企業職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區間為
(Ⅰ)求頻率分布圖中a的值;
(Ⅱ)估計該企業的職工對該部門評分不低于80的概率;
(Ⅲ)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在
的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐V-ABC中,平面VAB平面ABC,
VAB為等比三角形,AC
BC且AC=BC=
,O,M分別為AB,VA的中點。
(I)求證:VB//平面MOC;
(II)求證:平面MOC平面VAB;
(III)求三棱錐V-ABC的體積。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從高一年級學生中隨機抽取部分學生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統計,得到如圖所示的頻率分布直方圖.已知高一年級共有學生600名,據此估計,該模塊測試成績不少于60分的學生人數為( )
A.588
B.480
C.450
D.120
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com