【題目】某企業為了解下屬某部門對本企業職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區間為
(Ⅰ)求頻率分布圖中a的值;
(Ⅱ)估計該企業的職工對該部門評分不低于80的概率;
(Ⅲ)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在
的概率。
【答案】答案:(I)0.006;(II)0.4;(III).
【解析】(I)因為(0.004+a+0.0018+0.022x2+0.028)x10=1,所以a=0.006。
(Ⅱ)由所給頻率分布直方圖知,50名受訪職工評分不低于80的頻率為(0.022+0.0180)×10=0.4,所以該企業職工對該部門評分不低于80的概率的估計值為0.4;
(III)受訪職工評分在的有:50×0.006×10=3(人)即為
;受訪職工評分在
的有:50×0.004×40=2(人)即為
,從這5名受訪職工中隨機抽取2人,所有可能的結果共有10種,它們是
,又因為所抽取2人的評分都在
的結果有1種,即
,故所求的概率為,
.
利用頻率分布直方圖解題的時,注意其表達的意義,同時要理解頻率是概率的估計值這一基礎知識;在利用古典概型解題時,要注意列出所有的基本事件,千萬不可出現重、漏的情況。
科目:高中數學 來源: 題型:
【題目】(2015·四川)如圖,A , B , C , D為平面四邊形ABCD的四個內角.
(1)證明:tan=
(2)若A+C=180°, AB=6, BC=3, CD=4, AD=5, 求tan+tan
+tan
+tan
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·湖北)已知數列的各項均為正數,
,
為自然對數的底數.
(1)求函數的單調區間,并比較
與
的大;
(2)計算 ,
,
, 由此推測計算
的公式,并給出證明;
(3)令 , 數列
,
的前
項和分別記為
,
, 證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若n是一個三位正整數,且n的個位數字大于十位數字,十位數字大于百位數字,則稱n為“三位遞增數”(如137,359,567等).在某次數學趣味活動中,每位參加者需從所有的“三位遞增數”中隨機抽取1個數,且只能抽取一次.得分規則如下:若抽取的“三位遞增數”的三個數字之積不能被5整除,參加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)寫出所有個位數字是5的“三位遞增數” ;
(2)若甲參加活動,求甲得分X的分布列和數學期望EX.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列
是遞增的等比數列,a1+a4=9,a2a3=8,則數列
的前n項和等于
,解得a1=1,a4=8,或者a1=8,a4=1,但由于是遞增數列,即a1=1,a4=8,即q3=
=8,所以q=2.因而數列
的前n項和為 。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數列,并求{an}的通項公式;
(2)證明: +
+…+
<
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com