【題目】已知圓,
(1)若直線過定點
,且與圓C相切,求
的方程.
(2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D的方程.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且過點
,直線
交橢圓
于不同的兩點
,設線段
的中點為
.
(1)求橢圓的方程;
(2)當的面積為
(其中
為坐標原點)且
時,試問:在坐標平面上是否存在兩個定點
,使得當直線
運動時,
為定值?若存在,求出點
的坐標和定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(x+2),g(x)=loga(2﹣x)(a>0,a≠1).
(1)求函數f(x)﹣g(x)的定義域;
(2)判斷f(x)﹣g(x)的奇偶性并證明;
(3)求f(x)﹣g(x)>0中x取值范圍,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】常州地鐵項目正在緊張建設中,通車后將給市民出行帶來便利.已知某條線路通車后,地鐵的發車時間間隔 (單位:分鐘)滿足
,
.經測算,地鐵載客量與發車時間間隔
相關,當
時地鐵為滿載狀態,載客量為1200人,當
時,載客量會減少,減少的人數與
的平方成正比,且發車時間間隔為2分鐘時的載客量為560人,記地鐵載客量為
.
⑴ 求的表達式,并求當發車時間間隔為6分鐘時,地鐵的載客量;
⑵ 若該線路每分鐘的凈收益為(元),問當發車時間間隔為多少時,該線路每分鐘的凈收益最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2018·江西六校聯考)在△ABC中,角A,B,C所對的邊分別為a,b,c,a=4,b=4,cosA=-
.
(1)求角B的大;
(2)若f(x)=cos2x+sin2(x+B),求函數f(x)的單調遞增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,橢圓
的離心率為
,直線
被橢圓
截得的線段長為
.
(1)求橢圓的方程;
(2)過原點的直線與橢圓交于
兩點(
不是橢圓
的頂點),點
在橢圓
上,且
,直線
與
軸
軸分別交于
兩點.
①設直線斜率分別為
,證明存在常數
使得
,并求出
的值;
②求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義一:對于一個函數,若存在兩條距離為
的直線
和
,使得
時,
恒成立,則稱函數
在
內有一個寬度為
的通道.
定義二:若一個函數對于任意給定的正數
,都存在一個實數
,使得函數
在
內有一個寬度為
的通道,則稱
在正無窮處有永恒通道.
下列函數①;②
;③
;④
;⑤
. 其中在正無窮處有永恒通道的函數序號是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com