【題目】已知數列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ +
}為等比數列,并求{an}的通項公式an;
(2)數列{bn}滿足bn=(3n﹣1) an , 求數列{bn}的前n項和Tn .
科目:高中數學 來源: 題型:
【題目】某種型號汽車四個輪胎半徑相同,均為R=40cm,同側前后兩輪胎之間的距離(指輪胎中心之間距離)為l=280cm (假定四個輪胎中心構成一個矩形).當該型號汽車開上一段上坡路ABC(如圖(1)所示,其中∠ABC=a( ),且前輪E已在BC段上時,后輪中心在F位置;若前輪中心到達G處時,后輪中心在H處(假定該汽車能順利駛上該上坡路).設前輪中心在E和G處時與地面的接觸點分別為S和T,且BS=60cm,ST=100cm.(其它因素忽略不計)
(1)如圖(2)所示,FH和GE的延長線交于點O,求證:OE=40cot (cm);
(2)當a= π時,后輪中心從F處移動到H處實際移動了多少厘米?(精確到1cm)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有3名男生、4名女生,在下列不同條件下,求不同的排列方法總數.
(1)排成前后兩排,前排3人,后排4人;(2)全體站成一排,甲不站排頭也不站排尾;
(3)全體站成一排,女生必須站在一起;(4)全體站成一排,男生互不相鄰.(用數字作答)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=9x﹣2a3x+3:
(1)若a=1,x∈[0,1]時,求f(x)的值域;
(2)當x∈[﹣1,1]時,求f(x)的最小值h(a);
(3)是否存在實數m、n,同時滿足下列條件:①n>m>3;②當h(a)的定義域為[m,n]時,其值域為[m2,n2],若存在,求出m、n的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數有如下性質:如果常數
,那么該函數在
上是減函數,在
是增函數,其圖像如圖所示.
(1)已知,
,利用上述性質,求函數
的單調區間和值域;
(2)對于(1)中的函數和函數
,若對任意
,總存在
,使得
成立,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)為增函數,當x,y∈R時,恒有f(x+y)=f(x)+f(y)
(1)求證:f(x)是奇函數.
(2)是否存在m,使,對于任意x∈[1,2]恒成立?若存在,求出實數m的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com