【題目】己知,點
是直線
與圓
的公共點,則
的最大值為( ).
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知函數在區間
單調遞減,在區間
單調遞增.函數
.
(1)請寫出函數與函數
在
的單調區間;(只寫結論,不需證明)
(2)求函數的最大值和最小值;
(3)討論方程實根的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為提高員工的綜合素質,聘請專業機構對員工進行專業技術培訓,其中培訓機構費用成本為12000元.公司每位員工的培訓費用按以下方式與該機構結算:若公司參加培訓的員工人數不超過30人時,每人的培訓費用為850元;若公司參加培訓的員工人數多于30人,則給予優惠:每多一人,培訓費減少10元.已知該公司最多有60位員工可參加培訓,設參加培訓的員工人數為人,每位員工的培訓費為
元,培訓機構的利潤為
元.
(1)寫出與
之間的函數關系式;
(2)當公司參加培訓的員工為多少人時,培訓機構可獲得最大利潤?并求最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的短軸長為2,過上頂點E和右焦點F的直線與圓M:x2+y2﹣4x﹣2y+4=0相切.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l過點(1,0),且與橢圓C交于點A,B,則在x軸上是否存在一點T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標原點),若存在,求出 t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某學校準備修建一個面積為2400平方米的矩形活動場地(圖中ABCD)的圍欄,按照修建要求,中間用圍墻EF隔開,使得ABEF為矩形,EFCD為正方形,設米,已知圍墻(包括EF)的修建費用均為每米500元,設圍墻(包括EF)的修建總費用為y元.
(1)求出y關于x的函數解析式及x的取值范圍;
(2)當x為何值時,圍墻(包括EF)的修建總費用y最。坎⑶蟪鰕的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ +
}為等比數列,并求{an}的通項公式an;
(2)數列{bn}滿足bn=(3n﹣1) an , 求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數h(x)=lnx+ .
(1)函數g(x)=h(2x+m),若x=1是g(x)的極值點,求m的值并討論g(x)的單調性;
(2)函數φ(x)=h(x)﹣ +ax2﹣2x有兩個不同的極值點,其極小值為M,試比較2M與﹣3的大小關系,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com