【題目】某公司制定了一個激勵銷售人員的獎勵方案:對于每位銷售人員,均以10萬元為基數,若銷售利潤沒超出這個基數,則可獲得銷售利潤的5%的獎金;若銷售利潤超出這個基數(超出的部分是a萬元),則可獲得萬元的獎金.記某位銷售人員獲得的獎金為y(單位:萬元),其銷售利潤為x(單位:萬元).
(1)寫出這位銷售人員獲得的獎金y與其銷售利潤x之間的函數關系式;
(2)如果這位銷售人員獲得了萬元的獎金,那么他的銷售利潤是多少萬元?
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在
軸上,它的一個頂點恰好是拋物線
的焦點,離心率等于
.
(1)求橢圓的標準方程;
(2)過橢圓的右焦點
作直線
交橢圓
于
兩點,交
軸于
點,若
,求證
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區高考實行新方案,規定:語文、數學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目.若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定,“物理、化學和生物”為其選考方案.
某學校為了了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調查,統計選考科目人數如下表:
性別 | 選考方案確定情況 | 物理 | 化學 | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有6人 | 6 | 6 | 3 | 1 | 2 | 0 |
選考方案待確定的有8人 | 5 | 4 | 0 | 1 | 2 | 1 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 0 | 0 | 1 | 1 |
(Ⅰ)試估計該學校高一年級確定選考生物的學生有多少人?
(Ⅱ)寫出選考方案確定的男生中選擇“物理、化學和地理”的人數.(直接寫出結果)
(Ⅲ)從選考方案確定的男生中任選2名,試求出這2名學生選考科目完全相同的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為評估設備生產某種零件的性能,從該設備生產零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:
直徑/ | 78 | 79 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 93 | 合計 |
件數 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經計算,樣本的平均值,標準差
,以頻率值作為概率的估計值.
(1)為評判一臺設備的性能,從該設備加工的零件中任意抽取一件,記其直徑為,并根據以下不等式進行評判(
表示相應事件的頻率):
①;②
;③
,評判規則為:若同時滿足上述三個不等式,則設備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁.試判斷
設備的性能等級.
(2)將直徑小于等于的零件或直徑大于等于
的零件認定為是“次品”,將直徑小于等于
的零件或直徑大于等于
的零件認定為是“突變品”,從樣本的“次品”中隨意抽取2件零件,求“突變品”個數
的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓:
的左,右焦應分別是
,
,離心率為
,過
且垂直于
軸的直線被橢圓
截得的線段長為1.
(1)求橢圓的方程;
(2)已知直線:
與橢圓
切于點
,直線
平行于
,與橢圓
交于不同的兩點
、
,且與直線
交于點
.證明:存在常數
,使得
,并求
的值;
(3)點是橢圓
上除長軸端點外的任一點,連接
,
,設
后的角平分線
交
的長軸于點
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD是直角梯形,側棱
底面ABCD,AB垂直于AD和BC,
,且
.M是棱SB的中點.
(Ⅰ)求證:面SCD;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設點N是直線CD上的動點,MN與面SAB所成的角為,求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com