【題目】在四邊形ABCD中,對角線AC,BD垂直相交于點O,且OA=OB=OD=4,OC=3. 將△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小為90°(如圖).已知Q為EO的中點,點P在線段AB上,且 .
(Ⅰ)證明:直線PQ∥平面ADE;
(Ⅱ)求直線BD與平面ADE所成角θ的正弦值.
【答案】證明:(Ⅰ)如圖,取OD的中點R,連接PR,QR,則DE∥RQ,
由題知 ,又
,故AB:AP=4:1=DB:DR,因此AD∥PR,
因為PR,RQ平面ADE,
且AD,DE平面ADE,故PR∥平面ADE,RQ∥平面ADE,
又PR∩RQ=R,
故平面PQR∥平面ADE,從而PQ∥平面ADE.
(Ⅱ)解:由題EA=ED=5, ,設點O到平面ADE的距離為d,
則由等體積法可得 ,
故 ,因此
.
【解析】(Ⅰ)證明PR∥平面ADE,RQ∥平面ADE,可得平面PQR∥平面ADE,即可證明:直線PQ∥平面ADE;(Ⅱ)由等體積法可得點O到平面ADE的距離,即可求直線BD與平面ADE所成角θ的正弦值.
【考點精析】解答此題的關鍵在于理解直線與平面平行的判定的相關知識,掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對空間角的異面直線所成的角的理解,了解已知為兩異面直線,A,C與B,D分別是
上的任意兩點,
所成的角為
,則
.
科目:高中數學 來源: 題型:
【題目】為了鞏固全國文明城市創建成果,今年吉安市開展了拆除違章搭建鐵皮棚專項整治行為.為了了解市民對此項工作的“支持”與“反對”態度,隨機從存在違章搭建的戶主中抽取了男性、女性共名進行調查,調查結果如下:
支持 | 反對 | 合計 | |
男性 | |||
女性 | |||
合計 |
(1)根據以上數據,判斷是否有的把握認為對此項工作的“支持”與“反對”態度與“性別”有關;
(2)現從參與調查的女戶主中按此項工作的“支持”與“反對”態度用分層抽樣的方法抽取人,從抽取的
人中再隨機地抽取
人贈送小禮品,記這
人中持“支持”態度的有
人,求
的分布列與數學期望.
參考公式:,其中
.
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點.
(1)求證:PD⊥平面ABE;
(2)若F為AB中點, ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為-
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列的前n項和為
,
,
,數列
滿足:
,
,
,數列
的前n項和為
(1)求數列的通項公式及前n項和;
(2)求數列的通項公式及前n項和;
(3)記集合,若M的子集個數為16,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學著作《九章算術》中有這樣一個題目:“今有蒲生一日,長三尺;莞生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”.其大意是“今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減其一半,莞的生長逐日增加一倍.問幾日蒲、莞長度相等?”若本題改為求當蒲、莞長度相等時,莞的長度為( )
A. 4尺B. 5尺C. 6尺D. 7尺
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四邊形ABCD中,對角線AC,BD垂直相交于點O,且OA=OB=OD=4,OC=3. 將△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小為90°(如圖).已知Q為EO的中點,點P在線段AB上,且 .
(Ⅰ)證明:直線PQ∥平面ADE;
(Ⅱ)求直線BD與平面ADE所成角θ的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高一某班級在學校數學嘉年華活動中推出了一款數學游戲,受到大家的一致追捧.游戲規則如下:游戲參與者連續拋擲一顆質地均勻的骰子,記第i次得到的點數為,若存在正整數n,使得
,則稱為游戲參與者的幸運數字。
(I)求游戲參與者的幸運數字為1的概率;
(Ⅱ)求游戲參與者的幸運數字為2的概率,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com