【題目】某中學舉行了一次“環保知識競賽”活動.為了了解本次競賽學生成績情況,從中抽取了部分學生的分數(得分取正整數,滿分為100分)作為樣本(樣本容量為n)進行統計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數據).
(Ⅰ)求樣本容量n和頻率分布直方圖中x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取3名同學到市政廣場參加環保知識宣傳的志愿者活動,設ξ表示所抽取的3名同學中得分在[80,90)的學生個數,求ξ的分布列及其數學期望.
【答案】解:(Ⅰ)由題意可知,樣本容量 ,
,x=0.1﹣0.004﹣0.010﹣0.016﹣0.04=0.030.(3分) (Ⅱ)由題意可知,分數在[80,90)有5人,分數在[90,100)有2人,共7人.
抽取的3名同學中得分在[80,90)的學生個數ξ的可能取值為1,2,3,則 ,
,
.
所以,ξ的分布列為
ξ | 1 | 2 | 3 |
P |
所以, .
【解析】(Ⅰ)根據莖葉圖可得[50,60),總共有8人,結合頻率分布直方圖,可求樣本容量n和頻率分布直方圖中x、y的值;(Ⅱ)由題意可知,分數在[80,90)有5人,分數在[90,100)有2人,共7人.抽取的3名同學中得分在[80,90)的學生個數ξ的可能取值為1,2,3,求出相應的概率,即可求ξ的分布列及其數學期望.
【考點精析】利用頻率分布直方圖對題目進行判斷即可得到答案,需要熟知頻率分布表和頻率分布直方圖,是對相同數據的兩種不同表達方式.用緊湊的表格改變數據的排列方式和構成形式,可展示數據的分布情況.通過作圖既可以從數據中提取信息,又可以利用圖形傳遞信息.
科目:高中數學 來源: 題型:
【題目】平面直角坐標系xOy中,橢圓C: =1(a>b>0)的長軸長為2,拋物線E:x2=2y的準線與橢圓C相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C相交于A,B兩點且與拋物線E在第一象限相切于點P,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M,求 的最小值及此時點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=aex(a≠0),g(x)=x2(Ⅰ)若曲線c1:y=f(x)與曲線c2:y=g(x)存在公切線,求a最大值.
(Ⅱ)當a=1時,F(x)=f(x)﹣bg(x)﹣cx﹣1,且F(2)=0,若F(x)在(0,2)內有零點,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的公差d≠0,其前n項和為Sn , 若S9=99,且a4 , a7 , a12成等比數列. (Ⅰ)求數列{an}的通項公式;
(Ⅱ)若 ,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點F1、F2是雙曲線C: =1(a>0,b>0)的左、右焦點,O為坐標原點,點P在雙曲線C的右支上,且滿足|F1F2|=2|OP|,|PF1|≥3|PF2|,則雙曲線C的離心率的取值范圍為( )
A.(1,+∞)
B.[ ,+∞)
C.(1, ]
D.(1, ]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】祖沖之之子祖暅是我國南北朝時代偉大的科學家,他在實踐的基礎上提出了體積計算的原理:“冪勢既同,則積不容異”.意思是,如果兩個等高的幾何體 在同高處截得的截面面積恒等,那么這兩個幾何體的體積相等.此即祖暅原理.利用這個原理求球的體積時,需要構造一個滿足條件的幾何體,已知該幾何體三視圖 如圖所示,用一個與該幾何體的下底面平行相距為 h(0<h<2) 的平面截該幾何體,則截面面積為 ( )
A.
B.
C.
D.π(4-h2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線 ﹣
=1(a>0,b>0)的兩條漸近線與拋物線y2=2px(p>0)的準線分別交于O、A、B三點,O為坐標原點.若雙曲線的離心率為2,△AOB的面積為
,則p=( )
A.1
B.
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC. (Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求證:FC∥平面EAD;
(Ⅲ)求二面角A﹣FC﹣B的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com