【題目】如圖所示,在正方體中,
是
上一點,
是
的中點,
平面
(Ⅰ)求證:平面
;
(Ⅱ)求與平面
所成的角
【答案】(Ⅰ)見解析.(Ⅱ).
【解析】
(Ⅱ)利用正方體中的棱與面的關系可得CD⊥平面ADD1A1,進一步得到CD⊥AD1,再結合AD1⊥A1D,運用線面垂直的判定得答案;
(2)由已知MN⊥平面A1DC結合(1)的結論可得AD1與平面ABCD所成的角,就是MN與平面ABCD所成的角,進一步可得∠D1AD即為AD1與平面ABCD所成的角,則答案可求.
(Ⅰ)由是正方體知,
平面
,
平面
,
∴.又
為正方形,∴
.
平面
;
(細則:先證,進而得出結論的也是6分)
(Ⅱ)∵平面
,又由(Ⅰ)知
平面
,∴
∴與平面
所成的角就是
與平面
所成的角,
∵平面
,∴
即為
與平面
所成的角,
顯然,∴
與平面
所成的角為
.
(細則:對于不同方法,只要正確的按對應步驟給分)
科目:高中數學 來源: 題型:
【題目】從甲乙兩個城市分別隨機抽取16臺自動售貨機,對其銷售額進行統計,統計數據用莖葉圖表示(如圖所示),設甲乙兩組數據的平均數分別為中位數分別為
則( )
A. x甲<x乙,m甲>m乙 B. x甲>x乙,m甲>m乙
C. x甲>x乙,m甲<m乙 D. x甲<x乙,m甲<m乙
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4﹣1:幾何證明選講
如圖,⊙O和⊙O′相交于A,B兩點,過A作兩圓的切線分別交兩圓于C、D兩點,連接DB并延長交⊙O于點E.證明:
(1)ACBD=ADAB;
(2)AC=AE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在空間四邊形ABCD中,點E,H分別是邊AB,AD的中點,點F,G分別是邊BC,CD上的點,且,則下列說法正確的是________.(填寫所有正確說法的序號)
①EF與GH平行; ②EF與GH異面;
③EF與GH的交點M可能在直線AC上,也可能不在直線AC上;
④EF與GH的交點M一定在直線AC上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在斜三梭柱ABC﹣A1B1C1中,側面AA1C1C是菱形,AC1與A1C交于點O,E是棱AB上一點,且OE∥平面BCC1B1
(1)求證:E是AB中點;
(2)若AC1⊥A1B,求證:AC1⊥BC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知函數f(x)=(x+l)lnx﹣ax+a (a為正實數,且為常數)
(1)若f(x)在(0,+∞)上單調遞增,求a的取值范圍;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是拋物線
:
(
)上一點,
是拋物線的焦點,
且
.
(1)求拋物線的方程;
(2)已知 ,過
的直線
交拋物線
于
、
兩點,以
為圓心的圓
與直線
相切,試判斷圓
與直線
的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果執行右邊的程序框圖,輸入正整數N(N≥2)和實數a1 , a2 , …,an , 輸出A,B,則( )
A.A+B為a1 , a2 , …,an的和
B. 為a1 , a2 , …,an的算術平均數
C.A和B分別是a1 , a2 , …,an中最大的數和最小的數
D.A和B分別是a1 , a2 , …,an中最小的數和最大的數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面為等腰梯形,且底面與側面
垂直,
,
分別為線段
的中點,
,
,
,且
.
(1)證明: 平面
;
(2)求與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com