【題目】已知函數,
.
(1)若曲線在
處的切線的方程為
,求實數
的值;
(2)設,若對任意兩個不等的正數
,都有
恒成立,求實數
的取值范圍;
【答案】(1)a=﹣2;(2)[1,+∞)
【解析】試題分析:(1)由導數幾何意義得 (2)化簡不等式為
,即
為單調遞增函數,即
恒成立,參變分離得
的最大值,即得實數
的取值范圍
試題解析:解:(1)y=f(x)﹣g(x)=x2﹣alnx的導數為x﹣
,
曲線y=f(x)﹣g(x)在x=1處的切線斜率為k=1﹣a,
由切線的方程為6x﹣2y﹣5=0,可得1﹣a=3,
解得a=﹣2;
(2)h(x)=f(x)+g(x)=x2+alnx,
對任意兩個不等的正數x1,x2,都有>2恒成立,即為
>0,
令m(x)=h(x)﹣2x,可得m(x)在(0,+∞)遞增,
由m′(x)=h′(x)﹣2=x+﹣2≥0恒成立,
可得a≥x(2﹣x)的最大值,由x(2﹣x)=﹣(x﹣1)2+1可得最大值1,
則a≥1,即a的取值范圍是[1,+∞)
科目:高中數學 來源: 題型:
【題目】O為原點的直角坐標系中,點A(4,﹣3)為△OAB的直角頂點,已知AB=2OA,且點B的縱坐標大于0
(1)求 的坐標;
(2)求圓C1:x2﹣6x+y2+2y=0關于直線OB對稱的圓C2的方程;在直線OB上是否存在點P,過點P的任意一條直線如果和圓C1圓C2都相交,則該直線被兩圓截得的線段長相等,如果存在求出點P的坐標,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦距為
,設右焦點為
,過原點
的直線
與橢圓
交于
兩點,線段
的中點為
,線段
的中點為
,且
.
(1)求弦的長;
(2)當直線的斜率
,且直線
時,
交橢圓于
,若點
在第一象限,求證:直線
與
軸圍成一個等腰三角形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校學生社團為了解“大數據時代”下大學生就業情況的滿意度,對20名學生進行問卷計分調查(滿分100分),得到如圖所示的莖葉圖:
(1)計算男生打分的平均分,觀察莖葉圖,評價男女生打分的分散程度;
(2)從打分在80分以上的同學隨機抽3人,求被抽到的女生人數的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求曲線
在
處的切線方程;
(2)討論的單調性;
(3)設過兩點的直線的斜率為
,其中
、
為曲線
上的任意兩點,并且
,若
恒成立,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓O的方程為x2+y2=1,直線l1過點A(3,0),且與圓O相切.
(1)求直線l1的方程;
(2)設圓O與x軸相交于P,Q兩點,M是圓O上異于P,Q的任意一點,過點A且與x軸垂直的直線為l2 , 直線PM交直線l2于點P′,直線QM交直線l2于點Q′.求證:以P′Q′為直徑的圓C總經過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將52名志愿者分成A,B兩組參加義務植樹活動,A組種植150捆白楊樹苗,B組種植200捆沙棘樹苗.假定A,B兩組同時開始種植.
(1)根據歷年統計,每名志愿者種植一捆白楊樹苗用時小時,種植一捆沙棘樹苗用時
小時.應如何分配A,B兩組的人數,使植樹活動持續時間最短?
(2)在按(1)分配的人數種植1小時后發現,每名志愿者種植一捆白楊樹苗用時仍為小時,而每名志愿者種植一捆沙棘樹苗實際用時
小時,于是從A組抽調6名志愿者加入B組繼續種植,求植樹活動所持續的時間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直線坐標系中,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,直線
的參數方程為
(
為參數),曲線
的極坐標方程為
.
(1)直線的普通方程和曲線
的參數方程;
(2)設點在
上,
在
處的切線與直線
垂直,求
的直角坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com