【題目】已知橢圓
的離心率為
,橢圓上的點到左焦點的最小值為
.
(1)求橢圓的方程;
(2)已知直線與
軸交于點
,過點
的直線
與
交于
、
兩點,點
為直線
上任意一點,設直線
與直線
交于點
,記
,
,
的斜率分別為
,
,
,則是否存在實數
,使得
恒成立?若是,請求出
的值;若不是,請說明理由.
科目:高中數學 來源: 題型:
【題目】某調查機構對全國互聯網行業進行調查統計,得到整個互聯網行業從業者年齡分布餅狀圖、90后從事互聯網行業者崗位分布條形圖,則下列結論中不一定正確的是( ).
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A. 互聯網行業從業人員中90后占一半以上
B. 互聯網行業中從事技術崗位的人數超過總人數的20%
C. 互聯網行業中從事運營崗位的人數90后比80前多
D. 互聯網行業中從事技術崗位的人數90后比80后多
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,底面
為矩形,側面
為正三角形,
,
,平面
平面
,
為棱
上一點(不與
、
重合),平面
交棱
于點
.
(1)求證:;
(2)若二面角的余弦值為
,求點
到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數據丟失,但可以確定橫軸是從0開始計數的.
(1)根據頻率分布直方圖計算圖中各小長方形的寬度;
(2)估計該公司投入4萬元廣告費用之后,對應銷售收益的平均值(以各組的區間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數據,并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:萬元) | 1 | 3 | 4 | 7 |
表中的數據顯示,x與y之間存在線性相關關系,請將(2)的結果填入上表的空白欄,并計算y關于x的回歸方程.
回歸直線的斜率和截距的最小二乘法估計公式分別為,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】曲線.給出下列結論:
①曲線關于原點對稱;
②曲線上任意一點到原點的距離不小于1;
③曲線只經過
個整點(即橫縱坐標均為整數的點).
其中,所有正確結論的序號是( )
A.①②B.②C.②③D.③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,拋物線
上橫坐標為
的點到焦點
的距離為
.
(Ⅰ)求拋物線的方程及其準線方程;
(Ⅱ)過的直線
交拋物線
于不同的兩點
,交直線
于點
,直線
交直線
于點
. 是否存在這樣的直線
,使得
? 若不存在,請說明理由;若存在,求出直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
,過橢圓右焦點的最短弦長是
,且點
在橢圓上.
(1)求該橢圓的標準方程;
(2)設動點滿足:
,其中
,
是橢圓上的點,直線
與直線
的斜率之積為
,求點
的軌跡方程并判斷是否存在兩個定點
、
,使得
為定值?若存在,求出定值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某射手射擊1次,擊中目標的概率是0.9,他連續射擊4次,且各次射擊是否擊中目標相互之間沒有影響,有下列結論:
①他第3次擊中目標的概率是0.9;
②他恰好擊中目標3次的概率是;
③他至少擊中目標1次的概率是;
④他至多擊中目標1次的概率是
其中正確結論的序號是( )
A.①②③B.①③
C.①④D.①②
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com