【題目】如圖所示,某海濱養殖場有一塊可用水城,該養殖場用隔離網把該水域分為兩個部分,其中
百米,現計劃過
處再修建一條直線型隔離網,其端點分別在
上,記為
(1)若要使得所圍區域面積不大于
平方百米,求
的取值范圍:
(2)若要在區域內養殖魚類甲,
區域內養殖魚類乙,已知魚類甲的養殖成本是
萬元/平方百米,魚類乙的養殖成本是
萬元/平方百米.試確定
的值,使得養殖成本最小,
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數).以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)若曲線上一點
的極坐標為
,且
過點
,求
的普通方程和
的直角坐標方程;
(2)設點,
與
的交點為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
)的圖象為曲線
.
(Ⅰ)求曲線上任意一點處的切線的斜率的取值范圍;
(Ⅱ)若曲線上存在兩點處的切線互相垂直,求其中一條切線與曲線
的切點的橫坐標的取值范圍;
(Ⅲ)試問:是否存在一條直線與曲線C同時切于兩個不同點?如果存在,求出符合條件的所有直線方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列滿足:
(常數
),
.數列
滿足:
.
(1)求的值;
(2)求出數列的通項公式;
(3)問:數列的每一項能否均為整數?若能,求出k的所有可能值;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC中,角A,B,C的對邊分別為a,b,c,且(a+b﹣c)(sinA+sinB+sinC)=bsinA.
(1)求C;
(2)若a=2,c=5,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】基于移動互聯技術的共享單車被稱為“新四大發明”之一,短時間內就風靡全國,帶給人們新的出行體驗,某共享單車運營公司的市場研究人員為了解公司的經營狀況,對該公司最近六個月的市場占有率進行了統計,結果如表:
月份 | ||||||
月份代碼x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 11 | 13 | 16 | 15 | 20 | 21 |
請用相關系數說明能否用線性回歸模型擬合y與月份代碼x之間的關系,如果能,請計算出y關于x的線性回歸方程,并預測該公司2018年12月的市場占有率
如果不能,請說明理由.
根據調研數據,公司決定再采購一批單車擴大市場,現有采購成本分別為1000元
輛和800元
輛的A,B兩款車型,報廢年限各不相同
考慮公司的經濟效益,該公司決定對兩款單車進行科學模擬測試,得到兩款單車使用壽命頻數表如表:
報廢年限 車型 | 1年 | 2年 | 3年 | 4年 | 總計 |
A | 10 | 30 | 40 | 20 | 100 |
B | 15 | 40 | 35 | 10 | 100 |
經測算,平均每輛單車每年可以為公司帶來收入500元不考慮除采購成本以外的其他成本,假設每輛單車的使用壽命都是整數年,用頻率估計每輛車使用壽命的概率,分別以這100輛單車所產生的平均利潤作為決策依據,如果你是該公司的負責人,會選擇釆購哪款車型?
參考數據:,
,
參考公式:相關系數
回歸直線方程中的斜率和截距的最小二乘估計公式分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線過橢圓
的右焦點
,拋物線
的焦點為橢圓
的上頂點,且
交橢圓
于
兩點,點
在直線
上的射影依次為
.
(1)求橢圓的方程;
(2)若直線交
軸于點
,且
,當
變化時,證明:
為定值;
(3)當變化時,直線
與
是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com