【題目】如圖,在直三棱柱ABC﹣A1B1C1中,點D、E、F分別為線段A1C1、AB、A1A的中點,A1A=AC=BC,∠ACB=90°.求證:
(1)DE∥平面BCC1B1;
(2)EF⊥平面B1CE.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)取B1C1的中點M,連接D1M,BM,證明四邊形DMBE是平行四邊形,得到證明.
(2)根據勾股定理得EF⊥CE,根據三角函數關系得到EF⊥B1E,得到證明.
(1)如圖所示:取B1C1的中點M,連接D1M,BM,由題意得DM∥A1B1,
∴DM∥AB,且DM是△A1B1C1的中位線,DMAB=BE,
所以四邊形DMBE是平行四邊形,
∴DE∥BM,又DE面BCC1B1,BM面BCC1B1
∴DE∥平面BCC1B1.
(2)由題意設AC=2,則AB=2,AE
,AF=1,
在△AEF中,EF,
而CEAB
,Rt△ACF中,CF
,
∴△CEF中CE2+EF2=CF2,由勾股定理得,EF⊥CE,
tan∠FEC,tan∠BEB1
,所以tan∠FECtan∠BEB1=1,
所以EF⊥B1E,又CE∩EB1=E,CE平面B1CE,B1E平面B1CE,
∴EF⊥平面B1CE.
科目:高中數學 來源: 題型:
【題目】某校學生會為了解高二年級600名學生課余時間參加中華傳統文化活動的情況(每名學生最多參加7場).隨機抽取50名學生進行調查,將數據分組整理后,列表如下:
則以下四個結論中正確的是( )
A.表中的數值為10
B.估計該年級參加中華傳統文化活動場數不高于2場的學生約為108人
C.估計該年級參加中華傳統文化活動場數不低于4場的學生約為216人
D.若采用系統抽樣方法進行調查,從該校高二600名學生中抽取容量為30的樣本,則分段間隔為15
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設圓C1:x2+y2﹣10x+4y+25=0與圓C2:x2+y2﹣14x+2y+25=0,點A,B分別是C1,C2上的動點,M為直線y=x上的動點,則|MA|+|MB|的最小值為( 。
A.3B.3
C.5
D.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體中,四邊形為菱形,對角線
與
的交點為
,四邊形
為梯形,
,
.
(1)若,求證:
平面
;
(2)求證:平面平面
;
(3)若,求
與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】上饒市在某次高三適應性考試中對數學成績數據統計顯示,全市10000名學生的成績近似服從正態分布,現某校隨機抽取了50名學生的數學成績分析,結果這50名學生的成績全部介于85分到145分之間,現將結果按如下方式分為6組,第一組
,第二組
,…,第六組
,得到如圖所示的頻率分布直方圖:
(1)試由樣本頻率分布直方圖估計該校數學成績的平均分數;
(2)若從這50名學生中成績在125分(含125分)以上的同學中任意抽取3人,該3人在全市前13名的人數記為,求
的概率.
附:若,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線上一點
到其焦點下的距離為10.
(1)求拋物線C的方程;
(2)設過焦點F的的直線與拋物線C交于
兩點,且拋物線在
兩點處的切線分別交x軸于
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義區間,
,
,
的長度均為
,其中
.
(1)已知函數的定義域為
,值域為
,寫出區間
長度的最大值與最小值.
(2)已知函數的定義域為實數集
,滿足
(
是
的非空真子集).集合
,
,求
的值域所在區間長度的總和.
(3)定義函數,判斷函數
在區間
上是否有零點,并求不等式
解集區間的長度總和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了了解高中生的藝術素養,從學校隨機選取男,女同學各50人進行研究,對這100名學生在音樂、美術、戲劇、舞蹈等多個藝術項目進行多方位的素質測評,并把調查結果轉化為個人的素養指標和
,制成下圖,其中“*”表示男同學,“+”表示女同學.
若,則認定該同學為“初級水平”,若
,則認定該同學為“中級水平”,若
,則認定該同學為“高級水平”;若
,則認定該同學為“具備一定藝術發展潛質”,否則為“不具備明顯藝術發展潛質”.
(I)從50名女同學的中隨機選出一名,求該同學為“初級水平”的概率;
(Ⅱ)從男同學所有“不具備明顯藝術發展潛質的中級或高級水平”中任選2名,求選出的2名均為“高級水平”的概率;
(Ⅲ)試比較這100名同學中,男、女生指標的方差的大。ㄖ恍鑼懗鼋Y論).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com