【題目】已知集合A={x|(x﹣3)(x﹣3a﹣5)<0},函數y=lg(﹣x2+5x+14)的定義域為集合B.
(1)若a=4,求集合A∩B;
(2)若“x∈A”是“x∈B”的充分條件,求實數a的取值范圍.
【答案】
(1)解:因為集合A={x|(x﹣3)(x﹣3a﹣5)<0},
a=4,所以(x﹣3)(x﹣3a﹣5)<0(x﹣3)(x﹣17)<0,
解得3<x<17,所以A={x|3<x<17},
由函數y=lg(﹣x2+5x+14)可知﹣x2+5x+14>0,解得:﹣2<x<7,
所以函數的定義域為集合B={x|﹣2<x<7},
集合A∩B={x|3<x<7}
(2)解:“x∈A”是“x∈B”的充分條件,即x∈A,則x∈B,集合B={x|﹣2<x<7},
當3a+5>3即a>﹣ 時,3a+5≤7,解得﹣
<a≤
.
當3a+5≤3即a≤﹣ 時,3a+5≥﹣2,解得﹣
≥a≥﹣
.
綜上實數a的取值范圍:
【解析】(1)根據a的具體值求得集合A,B的具體取值范圍,再求得集合A,B的交集;(2)x∈A,則x∈B,即集合A是集合B的子集.
【考點精析】根據題目的已知條件,利用集合的交集運算的相關知識可以得到問題的答案,需要掌握交集的性質:(1)A∩BA,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,則A
B,反之也成立.
科目:高中數學 來源: 題型:
【題目】已知數列{an}中,a1=1,a2=2,以后各項由an=an﹣1+an﹣2(n≥3)給出.
(1)寫出此數列的前5項;
(2)通過公式bn= 構造一個新的數列{bn},寫出數列{bn}的前4項.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】聯合國教科文組織規定,每年的4月23日是“世界讀書日”.某校研究生學習小組為了解本校學生的閱讀情況,隨機調查了本校400名學生在這一天的閱讀時間(單位:分鐘),將時間數據分成5組:
,并整理得到如下頻率分布直方圖.
(1)求的值;
(2)試估計該學校所有學生在這一天的平均閱讀時間;
(3)若用分層抽樣的方法從這400名學生中抽取50人參加交流會,則在閱讀時間為的兩組中分別抽取多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l與圓C:x2+y2+2x﹣4y+a=0相交于A,B兩點,弦AB的中點為M(0,1).
(1)若圓C的半徑為 ,求實數a的值;
(2)若弦AB的長為6,求實數a的值;
(3)當a=1時,圓O:x2+y2=2與圓C交于M,N兩點,求弦MN的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在底面是正方形的四棱錐面ABCD,BD交AC于點E,F是PC中點,G為AC上一點.
(1)求證:;
(2)確定點G在線段AC上的位置,使FG//平面PBD,并說明理由;
(3)當二面角的大小為
時,求PC與底面ABCD所成角的正切值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com