精英家教網 > 高中數學 > 題目詳情

已知函數的圖象在與軸交點處的切線方程是.
(I)求函數的解析式;
(II)設函數,若的極值存在,求實數的取值范圍以及函數取得極值時對應的自變量的值.

(I);(II)時,函數有極值;
時,有極大值;當時,有極小值.

解析試題分析:( I)涉及切線,便要求出切點.本題中切點如何求?函數的圖象在與軸交點處的切線方程是.說明切點就是直線軸交點,所以令便得切點為(2,0).切點既在切線上又曲線,所以有, 即.
函數在切點處的導數就是切線的斜率,所以由已知有.這樣便得一個方程組,解這個方程組求出 便的解析式.
(II)將求導得,,
.這是一個二次方程,要使得函數有極值,則方程要有兩個不同的實數根,所以,由此可得的范圍.解方程有便得取得極值時的值.
試題解析:( I)由已知,切點為(2,0), 故有, 即
,由已知
聯立①②,解得.所以函數的解析式為  
(II)因為

當函數有極值時,則,方程有實數解,                                           由,得.
①當時,有實數,在左右兩側均有,故函數無極值
②當m<1時,g'(x)=0有兩個實數根x1= (2 ), x2= (2+), g(x),g'(x) 的情況如下表:








+
0

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,f '(x)為f(x)的導函數,若f '(x)是偶函數且f '(1)=0.
⑴求函數的解析式;
⑵若對于區間上任意兩個自變量的值,都有,求實數的最小值;
⑶若過點,可作曲線的三條切線,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,

(Ⅰ)若曲線處的切線相互平行,求的值及切線斜率;
(Ⅱ)若函數在區間上單調遞減,求的取值范圍;
(Ⅲ)設函數的圖像C1與函數的圖像C2交于P、Q兩點,過線段PQ的中點作x軸的垂線分別交C1、C2于點M、N,證明:C1在點M處的切線與C2在點N處的切線不可能平行.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,函數
(I)試求f(x)的單調區間。
(II)若f(x)在區間上是單調遞增函數,試求實數a的取值范圍:
(III)設數列是公差為1.首項為l的等差數列,數列的前n項和為,求證:當時,.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖像在點處的切線方程為.
(I)求實數,的值;
(Ⅱ)當時,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,,.
(Ⅰ)請寫出的表達式(不需證明);
(Ⅱ)求的極小值
(Ⅲ)設,的最大值為,的最小值為,試求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若曲線處的切線相互平行,求的值;
(2)試討論的單調性;
(3)設,對任意的,均存在,使得.試求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(I)當時,求的單調區間
(Ⅱ)若不等式有解,求實數m的取值菹圍;
(Ⅲ)定義:對于函數在其公共定義域內的任意實數,稱的值為兩函數在處的差值。證明:當時,函數在其公共定義域內的所有差值都大干2。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數其中,曲線在點處的切線方程為
(I)確定的值;
(II)設曲線在點處的切線都過點(0,2).證明:當時,;
(III)若過點(0,2)可作曲線的三條不同切線,求的取值范圍.

查看答案和解析>>
久久精品免费一区二区视