精英家教網 > 高中數學 > 題目詳情

已知函數,f '(x)為f(x)的導函數,若f '(x)是偶函數且f '(1)=0.
⑴求函數的解析式;
⑵若對于區間上任意兩個自變量的值,都有,求實數的最小值;
⑶若過點,可作曲線的三條切線,求實數的取值范圍.

;⑵的最小值為;⑶.

解析試題分析:⑴,由是偶函數得.又,所以,由此可得解析式;
⑵對于區間上任意兩個自變量的值,都有,則只需即可.所以接下來就利用導數求在區間上的最大值與最小值,然后代入解不等式即可得的最小值.⑶易知點不在曲線上.凡是過某點的切線(不是在某點處的切線)的問題,都要設出切點坐標然后列方程組..
設切點為.則.又,∴切線的斜率為
由此得,即.下面就考查這個方程的解的個數.
因為過點,可作曲線的三條切線,所以方程有三個不同的實數解.即函數有三個不同的零點.接下來就利用導數結合圖象研究這個函數的零點的個數.
試題解析:⑴∵,1分
是偶函數得.又,所以3分
.4分
⑵令,即,解得.5分










 



練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數的圖像過坐標原點,且在點 處的切線斜率為.
(1)求實數的值;
(2) 求函數在區間上的最小值;
(Ⅲ)若函數的圖像上存在兩點,使得對于任意給定的正實數都滿足是以為直角頂點的直角三角形,且三角形斜邊中點在軸上,求點的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,函數.
(1)當時,討論函數的單調性;
(2)當有兩個極值點(設為)時,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當時,求函數的單調區間;
(2)當時,若,恒成立,求實數的最小值;
(3)證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)當時,求的極值;
(Ⅱ)當a>0時,討論的單調性;
(Ⅲ)若對任意的a∈(2,3),x­1,x2∈[1,3],恒有成立,求實數m的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(14分)己知函數f (x)=ex,xR
(1)求 f (x)的反函數圖象上點(1,0)處的切線方程。
(2)證明:曲線y=f(x)與曲線y=有唯一公共點;
(3)設,比較的大小,并說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知函數,.
(1)當時,求函數的單調區間和極值;
(2)若恒成立,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數。
(Ⅰ)若時,函數取得極值,求函數的圖像在處的切線方程;
(Ⅱ)若函數在區間內不單調,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖象在與軸交點處的切線方程是.
(I)求函數的解析式;
(II)設函數,若的極值存在,求實數的取值范圍以及函數取得極值時對應的自變量的值.

查看答案和解析>>
久久精品免费一区二区视