【題目】已知公差不為0的等差數列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數列.
(1)求數列{an}通項公式;
(2)設數列{bn}滿足bn= ,求適合方程b1b2+b2b3+…+bnbn+1=
的正整數n的值.
【答案】
(1)解:設公差為為d,a1=2,且a2+1,a4+1,a8+1成等比數列,
∴(a4+1)2=(a2+1)(a8+1),
∴(3d+3)2=(3+d)(3+7d),
解得d=3,
∴an=a1+(n﹣1)d=2+3(n﹣1)=3n﹣1
(2)解:∵數列{bn}滿足bn= ,
∴bn= ,
∴bnbn+1=
=3(
﹣
)
∴b1b2+b2b3+…+bnbn+1=3( ﹣
+
﹣
++
﹣
)=3(
﹣
)=
,
即 =
,
解得n=10,
故正整數n的值為10
【解析】(1)由a2+1,a4+1,a8+1成等比數列,建立關于d的方程,解出d,即可求數列{an}的通項公式;(2)表示出bn , 利用裂項相消法求出b1b2+b2b3+…+bnbn+1 , 建立關于n的方程,求解即可
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函數f(x)的值域;
(2)設△ABC的三個內角A,B,C所對的邊分別為a,b,c,若A為銳角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分12分) 已知橢圓的左焦點
及點
,原點
到直線
的距離為
.
(1)求橢圓的離心率
;
(2)若點關于直線
的對稱點
在圓
上,求橢圓
的方程及點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著電子商務的發展, 人們的購物習慣正在改變, 基本上所有的需求都可以通過網絡購物解決. 小韓是位網購達人, 每次購買商品成功后都會對電商的商品和服務進行評價. 現對其近年的200次成功交易進行評價統計, 統計結果如下表所示.
對服務好評 | 對服務不滿意 | 合計 | |
對商品好評 | 80 | 40 | 120 |
對商品不滿意 | 70 | 10 | 80 |
合計 | 150 | 50 | 200 |
(1) 是否有的把握認為商品好評與服務好評有關? 請說明理由;
(2) 若針對商品的好評率, 采用分層抽樣的方式從這200次交易中取出5次交易, 并從中選擇兩次交易進行觀察, 求只有一次好評的概率.
(,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓方程(
)的離心率為
, 短軸長為2.
(1) 求橢圓的標準方程;
(2) 直線(
)與
軸的交點為
(點
不在橢圓外), 且與橢圓交于兩個不同的點
. 若線段
的中垂線恰好經過橢圓的下端點
, 且與線段
交于點
, 求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三國時期吳國的數學家趙爽曾創制了一幅“勾股圓方圖”,用數形結合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個全等的直角三角形與中間的小正方形拼成一個大正方形,其中一個直角三角形中較小的銳角滿足
,現向大正方形內隨機投擲一枚飛鏢,則飛鏢落在小正方形內的概率是
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產、
兩種元件,其質量按測試指標劃分為:大于或等于
為正品,小于
為次品.現從一批產品中隨機抽取這兩種元件各
件進行檢測,檢測結果記錄如下:
B |
由于表格被污損,數據、
看不清,統計員只記得
,且
、
兩種元件的檢測數據的平均值相等,方差也相等.
(1)求表格中與
的值;
(2)從被檢測的件
種元件中任取
件,求
件都為正品的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種設備隨著使用年限的增加,每年的維護費相應增加.現對一批該設備進行調查,得到這批設備自購入使用之日起,前五年平均每臺設備每年的維護費用大致如下表:
年份 | 1 | 2 | 3 | 4 | 5 |
維護費 | 1.1 | 1.5 | 1.8 | 2.2 | 2.4 |
(Ⅰ)求關于
的線性回歸方程;
(Ⅱ)若該設備的價格是每臺5萬元,甲認為應該使用滿五年換一次設備,而乙則認為應該使用滿十年換一次設備,你認為甲和乙誰更有道理?并說明理由.
(參考公式:
.)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com