【題目】已知集合A= .
(1)求A∩B;
(2)若f(x)=log2x﹣ ,x∈A∩B求函數f(x)的最大值.
【答案】
(1)解:∵1<2x≤16,∴20<2x≤24,即0<x≤4,
∴A={x|0<x≤4},
∵x∈(0,4],∴ .
∴A∩B=(0,2]
(2)解:f(x)=log2x﹣ 的導數為f′(x)=
+
,
f′(x)在(0,2]大于0,可得f(x)在(0,2]遞增,
f(2)取得最大值log22﹣ =1﹣
=
【解析】(1)運用指數函數單調性化簡集合A,由冪函數單調性求得B,再由交集定義可得;(2)求得f(x)的導數,判斷單調性,即可得到f(2)為最大值.
【考點精析】解答此題的關鍵在于理解集合的交集運算的相關知識,掌握交集的性質:(1)A∩BA,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,則A
B,反之也成立,以及對函數的最值及其幾何意義的理解,了解利用二次函數的性質(配方法)求函數的最大(。┲;利用圖象求函數的最大(。┲;利用函數單調性的判斷函數的最大(小)值.
科目:高中數學 來源: 題型:
【題目】等差數列{an}的公差d≠0滿足成等比數列,若
=1,Sn是{
}的前n項和,則
的最小值為________.
【答案】4
【解析】
成等比數列,
=1,可得:
=
,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入
利用分離常數法化簡后,利用基本不等式求出式子的最小值.
∵成等比數列,a1=1,
∴=
,
∴(1+2d)2=1+12d,d≠0,
解得d=2.
∴an=1+2(n﹣1)=2n﹣1.
Sn=n+×2=n2.
∴=
=n+1+
﹣2≥2
﹣2=4,
當且僅當n+1=時取等號,此時n=2,且
取到最小值4,
故答案為:4.
【點睛】
本題考查了等差數列的通項公式、前n項和公式,等比中項的性質,基本不等式求最值,在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數)、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應用,否則會出現錯誤.
【題型】填空題
【結束】
17
【題目】設是公比為正數的等比數列,
,
(1)求的通項公式;
(2)設是首項為1,公差為2的等差數列,求數列
的前
項和
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】教育部記錄了某省2008到2017年十年間每年自主招生錄取的人數為方便計算,2008年編號為1,2009年編號為2,
,2017年編號為10,以此類推
數據如下:
年份編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
人數 | 3 | 5 | 8 | 11 | 13 | 14 | 17 | 22 | 30 | 31 |
Ⅰ
根據前5年的數據,利用最小二乘法求出y關于x的回歸方程
,并計算第8年的估計值和實際值之間的差的絕對值;
Ⅱ
根據
Ⅰ
所得到的回歸方程預測2018年該省自主招生錄取的人數.
其中,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種產品的廣告費用支出與銷售額
之間有如下的對應數據:
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;并說明銷售額y與廣告費用支出x之間是正相關還是負相關?
(2)請根據上表提供的數據,求回歸直線方程;
(3)據此估計廣告費用為10時,銷售收入的值.
(參考公式:,).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知公差不為0的等差數列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數列.
(1)求數列{an}通項公式;
(2)設數列{bn}滿足bn= ,求適合方程b1b2+b2b3+…+bnbn+1=
的正整數n的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com