精英家教網 > 高中數學 > 題目詳情
某地有三個村莊,分別位于等腰直角三角形ABC的三個頂點處,已知AB=AC=6km,現計劃在BC邊的高AO上一點P處建造一個變電站. 記P到三個村莊的距離之和為y.
(1)設,把y表示成的函數關系式;
(2)變電站建于何處時,它到三個小區的距離之和最?

(1)(2)km
(1)在中,所以=OA=.所以
由題意知.               …2分
所以點PAB、C的距離之和為
.  ……6分
故所求函數關系式為. ……………7分
(2)由(1)得,令
,又,從而.   ……………………9分.
時,;當時, .
所以當 時,取得最小值,……… 13分
此時(km),即點POA上距Okm處.
變電站建于距Okm處時,它到三個小區的距離之和最小. …… 15分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數
(Ⅰ)求證:函數上是增函數.
(Ⅱ)若上恒成立,求實數a的取值范圍.
(Ⅲ)若函數上的值域是,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

 已知f(x)=定義在區間[-1,1]上,設x1x2∈[-1,1]且x1x2
求證: | f(x1)-f(x2)|≤| x1x2|

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題




(1)分別寫出按甲、乙兩種優惠方案實際付款金額(元)、(元)與之間的函數關系式;
(2)如果該商場即允許只選擇一種優惠方案購買,也允許同時用兩種優惠方案購買,請你就購買這種毛筆10支和這種書法練習本60本設計一種最省錢的購買方案

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某公司為了實現1000萬元利潤的目標,準備制定一個激勵銷售部門的獎勵方案;在銷售利潤達到10萬元時,按銷售利潤進行獎勵,且獎金(單位:萬元)隨銷售利潤(單位:萬元)的增加而增加,但獎金總數不超過萬元,同時獎金不超過利潤的.現有三個獎勵模型:,,.其中哪個模型能符合公司的要求?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

求函數的最小值和最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

給出下列兩個條件:(1)f(+1)=x+2;
(2)f(x)為二次函數且f(0)=3,f(x+2)-f(x)=4x+2.試分別求出f(x)的解析式.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,某客運公司規定旅客可隨身攜帶一定重量的行李,如果超過規定,則需要購買行李票,行李票費用(元)與行李重量的關系用直線的方程表示,試求:
(1)直線的方程.
(2)旅客最多可免費攜帶多少行李?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

,則

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视