【題目】甲、乙兩人進行圍棋比賽,比賽要求雙方下滿五盤棋,開始時甲每盤棋贏的概率為,由于心態不穩,甲一旦輸一盤棋,他隨后每盤棋贏的概率就變為
.假設比賽沒有和棋,且已知前兩盤棋都是甲贏.
(Ⅰ)求第四盤棋甲贏的概率;
(Ⅱ)求比賽結束時,甲恰好贏三盤棋的概率.
【答案】(Ⅰ);(Ⅱ)
.
【解析】
(Ⅰ)分兩種情況:①第三盤棋和第四盤棋都是甲贏,②第三盤棋乙贏、第四盤棋甲贏,結合古典概型的概率計算公式以及獨立事件的概率乘法公式即可求出答案;
(Ⅱ)分三種情況:①甲第三盤贏,②甲第四盤贏,③甲第五盤贏,結合古典概型的概率計算公式以及獨立事件的概率乘法公式即可求出答案.
解:(Ⅰ)設事件為“第四盤棋甲贏”,若第四盤棋甲贏,分兩種情況:
若第三盤棋和第四盤棋都是甲贏,概率,
若第三盤棋乙贏,第四盤棋甲贏,概率,
∴;
(Ⅱ)設事件為“比賽結束時,甲恰好贏三盤棋”,若甲恰好贏三盤棋,則他在后三盤棋中只贏一盤,分三種情況:
若甲第三盤贏,概率,
若甲第四盤贏,概率,
若甲第五盤贏,概率,
∴.
科目:高中數學 來源: 題型:
【題目】某摩托車生產企業,上年度生產摩托車的投入成本為1萬元/輛,出廠價為1.2萬元/輛,年銷售量為1000輛.本年度為適應市場需求,計劃提高產品檔次,適度增加投入成本.若每輛車投入成本增加的比例為x(0<x<1),則出廠價相應的提高比例為0.75x,同時預計年銷售量增加的比例為0.6x.已知年利潤=(出廠價﹣投入成本)×年銷售量.
(1)寫出本年度預計的年利潤y與投入成本增加的比例x的關系式;
(2)為使本年度的年利潤比上年有所增加,問投入成本增加的比例x應在什么范圍內?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】輥子是客家傳統農具,南方農民犁開田地后,仍有大的土塊.農人便用六片葉齒組成輥軸,兩側裝上木板,人跨開兩腳站立,既能掌握平衡,又能增加重量,讓牛拉動輥軸前進,壓碎土塊,以利于耕種.這六片葉齒又對應著菩薩六度,即布施持戒忍辱精進禪定與般若.若甲乙每人依次有放回地從這六片葉齒中隨機取一片,則這兩人選的葉齒對應的“度”相同的概率為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,點
為橢圓
:
的右焦點,過
的直線與橢圓
交于
、
兩點,線段
的中點為
.
(1)求橢圓的方程;
(2)若直線、
斜率的乘積為
,兩直線
,
分別與橢圓
交于
、
、
、
四點,求四邊形
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程為
(其中
為參數),以原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)若點在直線
上,且
,求直線
的斜率;
(2)若,求曲線
上的點到直線
的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,平面CDEF⊥平面ABCD,且四邊形ABCD為平行四邊形,∠DAB=45°,四邊形CDEF為直角梯形,EF∥DC,ED⊥CD,AB=3EF=3,ED=a,AD.
(1)求證:AD⊥BF;
(2)若線段CF上存在一點M,滿足AE∥平面BDM,求的值;
(3)若a=1,求二面角D﹣BC﹣F的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com