【題目】如表是一個由n2個正數組成的數表,用aij表示第i行第j個數(i,j∈N),已知數表中第一列各數從上到下依次構成等差數列,每一行各數從左到右依次構成等比數列,且公比都相等.已知a11=1,a31+a61=9,a35=48.
(1)求an1和a4n;
(2)設bn= +(﹣1)na
(n∈N+),求數列{bn}的前n項和Sn .
【答案】
(1)解:設第1列依次組成的等差公差為d,
設第1行依次組成的等比數列的公比為q,
根據題意a31+a61=(1+2d)+(1+5d)=9,
∴d=1,
∴an1=a11+(n﹣1)d=1+(n﹣1)×1=n,
∵a31=a11+2d=3,
∴a35=a31q4=3q4=48,
∵q>0,
∴q=2,
∵a41=4,
∴a4n=a41qn﹣1=4×2n﹣1=2n+1
(2)解:由bn= +(﹣1)na
(n∈N+)
= +(﹣1)nn
= +(﹣1)nn=
﹣
+(﹣1)nn,
前n項和Sn=1﹣ +
﹣
+…+
﹣
+[﹣1+2﹣3+4﹣5+(﹣1)nn],
當n為偶數時,Sn=1﹣ +
;
當n為奇數時,Sn=Sn﹣1+bn=1﹣ +
+
﹣
﹣n
=1﹣ ﹣
=
﹣
【解析】(1)設第1列依次組成的等差公差為d,設第1行依次組成的等比數列的公比為q,根據題意可以求出d和q,再根據通項公式的定義即可求出;(2)求出bn= +(﹣1)na
(n∈N+)=
+(﹣1)nn=
﹣
+(﹣1)nn,根據裂項相消法和分組,討論即可求出前n項和.
【考點精析】認真審題,首先需要了解數列的前n項和(數列{an}的前n項和sn與通項an的關系),還要掌握數列的通項公式(如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】在一次數學競賽中,30名參賽學生的成績(百分制)的莖葉圖如圖所示:若將參賽學生按成績由高到低編為1﹣30號,再用系統抽樣法從中抽取6人,則其中抽取的成績在[77,90]內的學生人數為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題 方程
有兩個不相等的負實根,
命題 不等式
的解集為
,
(1)若為真命題,求
的取值范圍.
(2)若 為真命題,
為假命題,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設拋物線 :
的準線
與
軸交于橢圓
:
的右焦點
,
為
的左焦點.橢圓的離心率為
,拋物線
與橢圓
交于
軸上方一點
,連接
并延長交
于點
,
為
上一動點,且在
,
之間移動.
(1)當 時,求
的方程;
(2)若 的邊長恰好是三個連續的自然數。求
到直線
距離的最大值以及此時
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,點Q為對角面A1BCD1內一動點,點M、N分別在直線AD和AC上自由滑動,直線DQ與MN所成角的最小值為θ,則下列結論中正確的是( 。
A. 若θ=15°,則點Q的軌跡為橢圓的一部分
B. 若θ=30°,則點Q的軌跡為橢圓的一部分
C. 若θ=45°,則點Q的軌跡為橢圓的一部分
D. 若θ=60°,則點Q的軌跡為橢圓的一部分
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:條件p:實數t滿足使對數log2(﹣2t2+7t﹣5)有意義;條件q:實數t滿足不等式t2﹣(a+3)t+a+2<0
(1)若命題¬p為真,求實數t的取值范圍;
(2)若命題p是命題q的充分不必要條件,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)
已知橢圓:
的左、右頂點分別為A,B,其離心率
,點
為橢圓上的一個動點,
面積的最大值是
.
(1)求橢圓的方程;
(2)若過橢圓右頂點
的直線
與橢圓的另一個交點為
,線段
的垂直平分線與
軸交于點
,當
時,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】連續拋擲同一顆均勻的骰子,令第i次得到的點數為ai , 若存在正整數k,使a1+a2+…+ak=6,則稱k為你的幸運數字.
(1)求你的幸運數字為3的概率;
(2)若k=1,則你的得分為5分;若k=2,則你的得分為3分;若k=3,則你的得分為1分;若拋擲三次還沒找到你的幸運數字則記0分,求得分X的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com