已知橢圓的長軸長為,焦點是
,點
到直線
的距離為
,過點
且傾斜角為銳角的直線
與橢圓交于A、B兩點,使得|
=3|
.
(1)求橢圓的標準方程;
(2)求直線l的方程.
(1) +y2=1;(2)
x-y-
=0.
解析試題分析:(1)∵F1到直線的距離為
,∴
.
∴a2=4而c=,∴b2=a2-c2=1.
∵橢圓的焦點在x軸上,∴所求橢圓的方程為+y2=1 4分
(2)設A(x1,y1)、B(x2,y2).由第(1)問知=3
,
∴
6分
∵A、B在橢圓+y2=1上,
∴l的斜率為
∴l的方程為,即
x-y-
=0. 12分
說明:各題如有其它解法可參照給分.
考點:本題主要考查橢圓的標準方程、幾何性質,定比分點坐標公式,直線方程。
點評:中檔題,涉及求橢圓的標準方程問題,往往聯想橢圓的定義,a,b,c,e的關系。求直線方程,這里運用了點斜式,為求直線的斜率,應用定比分點坐標公式及“點差法”。
科目:高中數學 來源: 題型:解答題
橢圓的右焦點為
,右準線為
,離心率為
,點
在橢圓上,以
為圓心,
為半徑的圓與
的兩個公共點是
.
(1)若是邊長為
的等邊三角形,求圓的方程;
(2)若三點在同一條直線
上,且原點到直線
的距離為
,求橢圓方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的左右焦點分別為
、
,由4個點
、
、
和
組成一個高為
,面積為
的等腰梯形.
(1)求橢圓的方程;
(2)過點的直線和橢圓交于
、
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
平面直角坐標系和極坐標系
的原點與極點重合,
軸的正半軸與極軸重合,單位長度相同。已知曲線
的極坐標方程為
,曲線
的參數方程為
,射線
,
,
與曲線
交于極點
以外的三點A,B,C.
(1)求證:;
(2)當時,B,C兩點在曲線
上,求
與
的值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓C:+
=1(a>b>0)的左、右焦點分別為F
、F
,A是橢圓C上的一點,AF
⊥F
F
,O是坐標原點,OB垂直AF
于B,且OF
=3OB.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)求t∈(0,b),使得命題“設圓x+y
=t
上任意點M(x
,y
)處的切線交橢圓C于Q
、Q
兩點,那么OQ
⊥OQ
”成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,
軸被拋物線
截得的線段長等于
的長半軸長.
(1)求的方程;
(2)設與
軸的交點為
,過坐標原點
的直線
與相交于
兩點,直線
分別與
相交于
.
①證明:為定值;
②記的面積為
,試把
表示成
的函數,并求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在坐標原點,兩個焦點分別為
,
,點
在橢圓
上,過點
的直線
與拋物線
交于
兩點,拋物線
在點
處的切線分別為
,且
與
交于點
.
(1) 求橢圓的方程;
(2) 是否存在滿足的點
? 若存在,指出這樣的點
有幾個(不必求出點
的坐標); 若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知,點B是
軸上的動點,過B作AB的垂線
交
軸于點Q,若
,
.
(1)求點P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線
的相交弦長為定值,若存在,求出定直線方程;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com