(本小題滿分12分)
已知橢圓的左右焦點分別為
、
,由4個點
、
、
和
組成一個高為
,面積為
的等腰梯形.
(1)求橢圓的方程;
(2)過點的直線和橢圓交于
、
兩點,求
面積的最大值.
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在坐標原點,焦點在
軸上,離心率為
,且過雙曲線
的頂點.
(1)求橢圓的標準方程;
(2)命題:“設、
是雙曲線
上關于它的中心對稱的任意兩點,
為該雙曲線上的動點,若直線
、
均存在斜率,則它們的斜率之積為定值”.試類比上述命題,寫出一個關于橢圓
的類似的正確命題,并加以證明和求出此定值;
(3)試推廣(Ⅱ)中的命題,寫出關于方程(
,
不同時為負數)的曲線的統一的一般性命題(不必證明).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
極坐標系與直角坐標系有相同的長度單位,以原點
為極點,以
正半軸為極軸,已知曲線
的極坐標方程為
,曲線
的參數方程是
(
為參數,
,射線
與曲線
交于極點
外的三點
(Ⅰ)求證:;
(Ⅱ)當時,
兩點在曲線
上,求
與
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓的離心率為
,
軸被曲線
截得的線段長等于
的短軸長。
與
軸的交點為
,過坐標原點
的直線
與
相交于點
,直線
分別與
相交于點
。
(1)求、
的方程;
(2)求證:。
(3)記的面積分別為
,若
,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線(
)上一點
到其準線的距離為
.
(Ⅰ)求與
的值;
(Ⅱ)設拋物線上動點
的橫坐標為
(
),過點
的直線交
于另一點
,交
軸于
點(直線
的斜率記作
).過點
作
的垂線交
于另一點
.若
恰好是
的切線,問
是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,動點
到兩點
,
的距離之和等于
,設點
的軌跡為曲線
,直線
過點
且與曲線
交于
,
兩點.
(1)求曲線的軌跡方程;
(2)是否存在△面積的最大值,若存在,求出△
的面積;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的兩個焦點為F1、F2,點P在橢圓C上,且|PF1|=
,
|PF2|= , PF1⊥F1F2.
(1)求橢圓C的方程;(6分)
(2)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點,且A、B關于點M對稱,求直線L的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的長軸長為,焦點是
,點
到直線
的距離為
,過點
且傾斜角為銳角的直線
與橢圓交于A、B兩點,使得|
=3|
.
(1)求橢圓的標準方程;
(2)求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設,在平面直角坐標系中,已知向量
,向量
,
,動點
的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)已知,證明:存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A,B,且
(O為坐標原點),并求出該圓的方程;
(3)已知,設直線
與圓C:
(1<R<2)相切于A1,且
與軌跡E只有一個公共點B1,當R為何值時,|A1B1|取得最大值?并求最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com