【題目】已知等差數列{an}的公差為2,前n項和為Sn , 且S1 , S2 , S4成等比數列.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)令bn=(﹣1)n﹣1 ,求數列{bn}的前n項和Tn .
【答案】解:(Ⅰ)∵等差數列{an}的公差為2,前n項和為Sn,
∴Sn= =n2﹣n+na1,
∵S1,S2,S4成等比數列,
∴ ,
∴ ,化為
,解得a1=1.
∴an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.
(Ⅱ)由(Ⅰ)可得bn=(﹣1)n﹣1 =
=
.
∴Tn= ﹣
+
++
.
當n為偶數時,Tn= ﹣
+
++
﹣
=1﹣
=
.
當n為奇數時,Tn= ﹣
+
+﹣
+
=1+
=
.
∴Tn= .
【解析】(Ⅰ)利用等差數列與等比數列的通項公式及其前n項和公式即可得出;(Ⅱ)由(Ⅰ)可得bn= .對n分類討論“裂項求和”即可得出.
【考點精析】解答此題的關鍵在于理解數列的前n項和的相關知識,掌握數列{an}的前n項和sn與通項an的關系,以及對數列的通項公式的理解,了解如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)為偶函數,當x<0時,f(x)=ln(﹣x)﹣ax.若直線y=x與曲線y=f(x)至少有兩個交點,則實數a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別是a、b、c,已知sinB+sinC=msinA(m∈R),且a2﹣4bc=0.
(1)當a=2, 時,求b、c的值;
(2)若角A為銳角,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ2=4ρcosθ+6ρsinθ﹣12,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為 (t為參數).
(I)寫出直線l的一般方程與曲線C的直角坐標方程,并判斷它們的位置關系;
(II)將曲線C向左平移2個單位長度,向上平移3個單位長度,得到曲線D,設曲線D經過伸縮變換 得到曲線E,設曲線E上任一點為M(x,y),求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分別為BC,PE的中點,AF⊥平面PED.
(1)求證:PA⊥平面ABCD
(2)求直線BF與平面AFD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:函數f(x)= 的圖象的對稱中心坐標為(1,1);命題q:若函數g(x)在區間[a,b]上是增函數,則有g(a)(b﹣a)<
g(x)dx<g(b)(b﹣a)成立.下列命題為真命題的是( )
A.p∧q
B.¬p∧q
C.p∧¬q
D.¬p∧¬q
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com