【解析】若,必有
.構造函數:
,則
恒成立,故有函數
在x>0上單調遞增,即a>b成立.其余選項用同樣方法排除.
【答案】A
科目:高中數學 來源:2013屆福建省泉州市高二下學期期中文科數學試卷(解析版) 題型:解答題
(1)若,
,求證:
;
(2)已知,且
, 求證:
與
中至少有一個小于2.
【解析】第一問利用均值不等式,可知
第二問中,
證明:(1)
(2)
查看答案和解析>>
科目:高中數學 來源:2011-2012學年上海市閘北區高考二模測試文科數學試卷(解析版) 題型:解答題
如圖,,
,…,
,…是曲線
上的點,
,
,…,
,…是
軸正半軸上的點,且
,
,…,
,…
均為斜邊在
軸上的等腰直角三角形(
為坐標原點).
(1)寫出、
和
之間的等量關系,以及
、
和
之間的等量關系;
(2)求證:(
);
(3)設,對所有
,
恒成立,求實數
的取值范圍.
【解析】第一問利用有,
得到
第二問證明:①當時,可求得
,命題成立;②假設當
時,命題成立,即有
則當
時,由歸納假設及
,
得
第三問
.………………………2分
因為函數在區間
上單調遞增,所以當
時,
最大為
,即
解:(1)依題意,有,
,………………4分
(2)證明:①當時,可求得
,命題成立;
……………2分
②假設當時,命題成立,即有
,……………………1分
則當時,由歸納假設及
,
得.
即
解得(
不合題意,舍去)
即當時,命題成立. …………………………………………4分
綜上所述,對所有,
. ……………………………1分
(3)
.………………………2分
因為函數在區間
上單調遞增,所以當
時,
最大為
,即
.……………2分
由題意,有.
所以,
查看答案和解析>>
科目:高中數學 來源:2012年全國普通高等學校招生統一考試理科數學(大綱卷解析版) 題型:選擇題
已知函數y=x²-3x+c的圖像與x恰有兩個公共點,則c=
(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1
【解析】若函數的圖象與
軸恰有兩個公共點,則說明函數的兩個極值中有一個為0,函數的導數為
,令
,解得
,可知當極大值為
,極小值為
.由
,解得
,由
,解得
,所以
或
,選A.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com