【題目】如圖所示,已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC,求證:AD⊥平面SBC.
科目:高中數學 來源: 題型:
【題目】已知橢圓的一個焦點與拋物線
的焦點
重合,且點
到直線
的距離為
,
與
的公共弦長為
.
(1)求橢圓的方程及點
的坐標;
(2)過點的直線
與
交于
兩點,與
交于
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某科技興趣小組對晝夜溫差的大小與小麥新品種發芽多少之間的關系進行了研究,記錄了2016年12月1日至12月5日五天的晝夜溫差與相應每天100顆種子的發芽得到了如下數據:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 9 | 11 | 10 | 12 | 13 |
發芽數 | 21 | 34 | 26 | 36 | 40 |
現從這5組數據中任選兩組,用余下的三組數據求回歸直線方程,再對被選取的兩組數據進行檢驗.
(Ⅰ)求選取的兩組數據恰好是不相鄰的兩天的概率;
(Ⅱ)若選取的是12月1日和12月5日的兩組數據,請根據余下的三組數據,求出與
的線性回歸直線方程
;
(Ⅲ)若由線性回歸直線方程得到的估計值與所選出的兩組實際數據的誤差均不超過兩顆,則認為得到的回歸直線方程是可靠的,試判斷(Ⅱ)中得到的線性回歸直線方程是否可靠.
附:在線性回歸方程中,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點,G是PB的中點.
(1)根據三視圖,畫出該幾何體的直觀圖.
(2)在直觀圖中,①證明:PD∥平面AGC;
②證明:平面PBD⊥平面AGC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)全集U={2,4,-(a-3)2},集合A={2,a2-a+2},若UA={-1},求實數a的值. (2)已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了了解兩班學生寒假期間觀看《中國詩詞大會》的時長,分別從這兩個班中隨機抽取5名學生進行調查,將他們觀看的時長(單位:小時)作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數字,葉表示個位數字).
(1)分別求出圖中所給兩組樣本數據的平均值,并據此估計哪個班的學生平均觀看的時間較長;
(2)從班的樣本數據中隨機抽取一個不超過19的數據記為
,從
班的樣本數據中隨機抽取一個不超過21的數據記為
,求
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(-x2+x-1)ex,其中e是自然對數的底數.
(1)求曲線f(x)在點(1,f(1))處的切線;
(2)若方程f(x)=x3+
x2+m有3個不同的根,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)求方程的實數解;
(Ⅱ)如果數列滿足
,
(
),是否存在實數
,使得
對所有的
都成立?證明你的結論.
(Ⅲ)在(Ⅱ)的條件下,設數列的前
項的和為
,證明:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com