精英家教網 > 高中數學 > 題目詳情

【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB= .D,E分別為線段AB,BC上的點,且CD=DE= ,CE=2EB=2.

(Ⅰ)證明:DE⊥平面PCD
(Ⅱ)求二面角A﹣PD﹣C的余弦值.

【答案】(Ⅰ)證明:∵PC⊥平面ABC,DE平面ABC,∴PC⊥DE,
∵CE=2,CD=DE= ,∴△CDE為等腰直角三角形,
∴CD⊥DE,∵PC∩CD=C,
DE垂直于平面PCD內的兩條相交直線,
∴DE⊥平面PCD
(Ⅱ)由(Ⅰ)知△CDE為等腰直角三角形,∠DCE=
過點D作DF垂直CE于F,易知DF=FC=FE=1,又由已知EB=1,故FB=2,
由∠ACB= 得DF∥AC, ,故AC= DF=
以C為原點,分別以 , 的方向為xyz軸的正方向建立空間直角坐標系,
則C(0,0,0),P(0,0,3),A( ,0,0),E(0,2,0),D(1,1,0),
=(1,﹣1,0), =(﹣1,﹣1,3), =( ,﹣1,0),
設平面PAD的法向量 =(x,y,z),由 ,
故可取 =(2,1,1),
由(Ⅰ)知DE⊥平面PCD,故平面PCD的法向量 可取 =(1,﹣1,0),
∴兩法向量夾角的余弦值cos< , >= =
∴二面角A﹣PD﹣C的余弦值為

【解析】(Ⅰ)由已知條件易得PC⊥DE,CD⊥DE,由線面垂直的判定定理可得;(Ⅱ)以C為原點,分別以 , , 的方向為xyz軸的正方向建立空間直角坐標系,易得 , , 的坐標,可求平面PAD的法向量 ,平面PCD的法向量 可取 ,由向量的夾角公式可得.
【考點精析】根據題目的已知條件,利用直線與平面垂直的判定的相關知識可以得到問題的答案,需要掌握一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現了“直線與平面垂直”與“直線與直線垂直”互相轉化的數學思想.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】2016年雙十一期間,某電子產品銷售商促銷某種電子產品,該產品的成本為2元/件,通過市場分析,雙十一期間該電子產品銷售量y(單位:千件)與銷售價格x(單位:元)之間滿足關系式:y= +2x2﹣35x+170(其中2<x<8,a為常數),且已知當銷售價格為3元/件時,該電子產品銷售量為89千件. (Ⅰ)求實數a的值及雙十一期間銷售該電子產品獲得的總利潤L(x);
(Ⅱ)銷售價格x為多少時,所獲得的總利潤L(x)最大?并求出總利潤L(x)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,g(x)=x2eax(a<0). (Ⅰ)求函數f(x)的單調區間;
(Ⅱ)若對任意x1 , x2∈[0,2],f(x1)≥g(x2)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC中,角A,B,C的對邊分別是a,b,c且滿足(2a﹣c)cosB=bcosC.
(1)求角B的大。
(2)若△ABC的面積為 ,求a+c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知g(x)是定義在R上的奇函數,且當x<0時,g(x)=﹣ln(1﹣x),函數f(x)= ,若f(2﹣x2)>f(x),則x的取值范圍是(
A.(﹣∞,﹣2)∪(1,+∞)
B.(﹣∞,1)∪(2,+∞)
C.(﹣2,1)
D.(1,2)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱錐P﹣ABC中,底面ABC是邊長為6的正三角形,PA⊥底面ABC,且PB與底面ABC所成的角為
(1)求三棱錐P﹣ABC的體積;
(2)若M是BC的中點,求異面直線PM與AB所成角的大。ńY果用反三角函數值表示).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= 且x>0).若存在實數p,q(p<q),使得f(x)≤0的解集恰好為[p,q],則a的取值范圍是(
A.(0, ]
B.(一∞, ]
C.(0,
D.(一∞,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司設計如圖所示的環狀綠化景觀帶,該景觀帶的內圈由兩條平行線段(圖中的AB,DC)和兩個半圓構成,設AB=xm,且x≥80.

(1)若內圈周長為400m,則x取何值時,矩形ABCD的面積最大?
(2)若景觀帶的內圈所圍成區域的面積為 m2 , 則x取何值時,內圈周長最小?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國古代數學著作《算法統宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳疼減一半,六朝才得到其關,要見次日行里數,請公仔細算相還.”其大意為:“有一個人走了378里路,第一天健步行走,從第二天起腳疼每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了?”根據此規律,求后3天一共走多少里(
A.156里
B.84里
C.66里
D.42里

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视