【題目】某大型公司為了切實保障員工的健康安全,貫徹好衛生防疫工作的相關要求,決定在全公司范圍內舉行一次乙肝普查.為此需要抽驗669人的血樣進行化驗,由于人數較多,檢疫部門制定了下列兩種可供選擇的方案.
方案一:將每個人的血分別化驗,這時需要驗669次.
方案二:按個人一組進行隨機分組,把從每組
個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結果呈陰性,這
個人的血就只需檢驗一次(這時認為每個人的血化驗
次);否則,若呈陽性,則需對這
個人的血樣再分別進行一次化驗,這時該組
個人的血總共需要化驗
次.
假設此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應相互獨立.
(1)設方案二中,某組個人中每個人的血化驗次數為
,求
的分布列.
(2)設,試比較方案二中,
分別取2,3,4時,各需化驗的平均總次數;并指出在這三種分組情況下,相比方案一,化驗次數最多可以平均減少多少次?(最后結果四舍五入保留整數)
【答案】(1)分布列見解析;(2),462次;
,404次;
,397次;272次
【解析】
(1)由題得,
,分別求出對應的概率即得
的分布列;
(2)先求出,再分別求出
分別取2,3,4時,各需化驗的平均總次數,即得相比方案一,化驗次數最多可以平均減少的次數.
(1)設每個人的血呈陰性反應的概率為,則
.
所以個人的血混合后呈陰性反應的概率為
,呈陽性反應的概率為
.
依題意可知,
,
所以的分布列為:
(2)方案二中,結合(1)知每個人的平均化驗次數為
,
所以當時,
,
此時669人需要化驗的總次數為462次;
當時,
,
此時669人需要化驗的總次數為404次;
當時,
,
此時669人需要化驗的總次數為397次.
即時化驗次數最多,
時次數居中,
時化驗次數最少,
而采用方案一則需化驗669次.
故在這三種分組情況下,
相比方案一,當時化驗次數最多可以平均減少
(次)
科目:高中數學 來源: 題型:
【題目】依據某地某條河流8月份的水文觀測點的歷史統計數據所繪制的頻率分布直方圖如圖(甲)所示;依據當地的地質構造,得到水位與災害等級的頻率分布條形圖如圖(乙)所示.
試估計該河流在8月份水位的中位數;
(1)以此頻率作為概率,試估計該河流在8月份發生1級災害的概率;
(2)該河流域某企業,在8月份,若沒受1、2級災害影響,利潤為500萬元;若受1級災害影響,則虧損100萬元;若受2級災害影響則虧損1000萬元.
現此企業有如下三種應對方案:
方案 | 防控等級 | 費用(單位:萬元) |
方案一 | 無措施 | 0 |
方案二 | 防控1級災害 | 40 |
方案三 | 防控2級災害 | 100 |
試問,如僅從利潤考慮,該企業應選擇這三種方案中的哪種方案?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】北京地鐵八通線西起四惠站,東至土橋站,全長18.964km,共設13座車站.目前八通線執行2014年12月28日制訂的計價標準,各站間計程票價(單位:元)如下:
四惠 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | |
四惠東 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | ||
高碑店 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | p>5 | |||
傳媒大學 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | ||||
雙橋 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | |||||
管莊 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | ||||||
八里橋 | 3 | 3 | 3 | 3 | 4 | 4 | |||||||
通州北苑 | 3 | 3 | 3 | 3 | 3 | ||||||||
果園 | 3 | 3 | 3 | 3 | |||||||||
九棵樹 | 3 | 3 | 3 | ||||||||||
梨園 | /p> | 3 | 3 | ||||||||||
臨河里 | 3 | ||||||||||||
土橋 | |||||||||||||
四惠 | 四惠東 | 高碑店 | 傳媒大學 | 雙橋 | 管莊 | 八里橋 | 通州北苑 | 果園 | 九棵樹 | 梨園 | 臨河里 | 土橋 |
(Ⅰ)在13座車站中任選兩個不同的車站,求兩站間票價不足5元的概率;
(Ⅱ)甲乙二人從四惠站上車乘坐八通線,各自任選另一站下車(二人可同站下車),記甲乙二人乘車購票花費之和為X元,求X的分布列;
(Ⅲ)若甲乙二人只乘坐八通線,甲從四惠站上車,任選另一站下車,記票價為元;乙從土橋站上車,任選另一站下車,記票價為
元.試比較
和
的方差
和
大小.(結論不需要證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐,
,在平行四邊形
中,
,Q為
上的點,過
的平面分別交
,
于點E、F,且
平面
.
(1)證明:;
(2)若,
,Q為
的中點,
與平面
所成角的正弦值為
,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
已知曲線的極坐標方程為
,以極點
為直角坐標原點,以極軸為
軸的正半軸建立平面直角坐標系
,將曲線
向左平移
個單位長度,再將得到的曲線上的每一個點的橫坐標縮短為原來的
,縱坐標保持不變,得到曲線
(1)求曲線的直角坐標方程;
(2)已知直線的參數方程為
,(
為參數),點
為曲線
上的動點,求點
到直線
距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設、
是空間兩條不同的直線,
、
是空間兩個不同的平面.給出下列四個命題:
①若,
,
,則
;
②若,
,
,則
;
③若,
,
,則
;
④若,
,
,
,則
.
其中正確的是__________(填序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天津市某學校組織教師進行“學習強國”知識競賽,規則為:每位參賽教師都要回答3個問題,且對這三個問題回答正確與否相互之間互不影響,若每答對1個問題,得1分;答錯,得0分,最后按照得分多少排出名次,并分一、二、三等獎分別給予獎勵.已知對給出的3個問題,教師甲答對的概率分別為,
,p.若教師甲恰好答對3個問題的概率是
,則
________;在前述條件下,設隨機變量X表示教師甲答對題目的個數,則X的數學期望為________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com