已知點是拋物線
上不同的兩點,點
在拋物線
的準線
上,且焦點
到直線
的距離為
.
(I)求拋物線的方程;
(2)現給出以下三個論斷:①直線過焦點
;②直線
過原點
;③直線
平行
軸.
請你以其中的兩個論斷作為條件,余下的一個論斷作為結論,寫出一個正確的命題,并加以證明.
(1) ;(2)參考解析
解析試題分析:(1)由點F到直線的距離為
可求得拋物線中
.從而得到拋物線方程.
(2)根據題意共有三種情況:i) ①直線過焦點
;②直線
過原點
.由直線AB與拋物線的方程聯立結合韋達定理,表示出點D,B的坐標即可得到③直線
平行
軸.ii) ①直線
過焦點
;③直線
平行
軸同樣是表達出點D,B的坐標即可得到點A,O,D三點共線,即可得到結論.iii) ②直線
過原點
;③直線
平行
軸表達出點A,B的坐標關系即可得到點A,F,B三點共線,即得到結論.
(I)因為, 依題意得
, 2分
解得,所以拋物線
的方程為
4分
(2)①命題:若直線過焦點
,且直線
過原點
,則直線
平行
軸.
5分
設直線的方程為
,
, 6分
由 得
,
, 8分
直線的方程為
, 9分
所以點的坐標為
,
, 12分
直線
平行于
軸. 13分
②命題:若直線過焦點
,且直線
平行
軸,則直線
過原點
.
5分
設直線的方程為
,
, 6分
由 得
,
科目:高中數學 來源: 題型:解答題
已知橢圓的右焦點為
,離心率
,
是橢圓上的動點.
(1)求橢圓標準方程;
(2)若直線與
的斜率乘積
,動點
滿足
,(其中實數
為常數).問是否存在兩個定點
,使得
?若存在,求
的坐標及
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓的方程;
(2)若過點(2,0)的直線與橢圓
相交于兩點
,設
為橢圓上一點,且滿足
(
為坐標原點),當
<
時,求實數
取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2014·武漢模擬)已知點P是圓M:x2+(y+m)2=8(m>0,m≠)上一動點,點N(0,m)是圓M所在平面內一定點,線段NP的垂直平分線l與直線MP相交于點Q.
(1)當P在圓M上運動時,記動點Q的軌跡為曲線Г,判斷曲線Г為何種曲線,并求出它的標準方程.
(2)過原點斜率為k的直線交曲線Г于A,B兩點,其中A在第一象限,且它在x軸上的射影為點C,直線BC交曲線Г于另一點D,記直線AD的斜率為k′,是否存在m,使得對任意的k>0,都有|k·k′|=1?若存在,求m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓經過點P(1.
),離心率e=
,直線l的方程為x=4.
(1)求橢圓C的方程;
(2)AB是經過右焦點F的任一弦(不經過點P),設直線AB與直線l相交于點M,記PA,PB,PM的斜率分別為.問:是否存在常數λ,使得
?若存在,求λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓E:的焦點在x軸上.
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設F1、F2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內的點,直線F2P交y軸于點Q,并且F1P⊥F1Q.證明:當a變化時,點P在某定直線上.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點
,焦點在
軸上,離心率為
,右焦點到右頂點的距離為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓
交于
兩點,是否存在實數
,使
成立?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓左、右焦點分別為F1、F2,點P(2,
),點F2在線段PF1的中垂線上.
(1)求橢圓C的方程;
(2)設直線與橢圓C交于M、N兩點,直線F2M與F2N的斜率互為相反數,求證:直線l過定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,以原點為圓心、橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓的方程;
(2)設,過點
作與
軸不重合的直線
交橢圓于
、
兩點,連結
、
分別交直線
于
、
兩點.試問直線
、
的斜率之積是否為定值,若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com