精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

1)討論的單調性;

2)若,記的極小值為,證明:.

【答案】1)當時,單調遞增;當時,遞增區間為,遞減區間;當時,遞增區間,遞減區間; 2)證明見解析.

【解析】

1)求得函數的導數,分類討論,即可求解函數的單調區間;

2)由(1)可知,取得,把,轉化為,

,利用導數求得函數的單調性與最值,即可求解.

1)由題意,函數,

①當時,,此時函數單調遞增;

②當時,令,即,解得,

,即,解得,

所以函數單調遞增,在上單調遞減;

③當時,令,即,解得

,即,解得,

所以函數單調遞增,在上單調遞減,

綜上可得:

時,函數單調遞增;當時,函數遞增區間為,遞減區間;當時,函數遞增區間,遞減區間.

2)由(1)可知,當時,單調遞增,在上單調遞減,所以當時,函數取得極小值,

極小值為,

要證:,只需證:,只需證:,

,

,則,

,即,解得,

,即,解得,

所以函數在區間上單調遞減,在區間上單調遞增,

所以當時,取得最大值,最大值為,

即當時,,即,

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點為,原點為,橢圓的動弦過焦點且不垂直于坐標軸,弦的中點為,過且垂直于線段的直線交射線于點

(1)證明:點在定直線上;

(2)當最大時,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,軸非負半軸為極軸建立極坐標系,已知直線的極坐標方程為,曲線的參數方程為為參數).

1)若直線平行于直線,且與曲線只有一個公共點,求直線的方程;

2)若直線與曲線交于兩點,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知極坐標系的極點在平面直角坐標系的原點處,極軸與軸的正半軸重合,且長度單位相同;曲線 的方程是,直線的參數方程為為參數,),設, 直線與曲線交于 兩點.

(1)當時,求的長度;

(2)求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,設曲線在點處的切線與圓相切.

1)求函數的單調區間;

2)求函數上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中常數

1)當時,求函數的單調區間.

2)設定義在上的函數在點處的切線方程為.當時,若內恒成立,則稱為函數類對稱點.當時,是否存在類對稱點?若存在,請求出一個類對稱點的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某種氣墊船的最大航速是海里小時,船每小時使用的燃料費用和船速的平方成正比.若船速為海里小時,則船每小時的燃料費用為元,其余費用(不論船速為多少)都是每小時元。甲乙兩地相距海里,船從甲地勻速航行到乙地.

(1)試把船從甲地到乙地所需的總費用,表示為船速(海里小時)的函數,并指出函數的定義域;

(2)當船速為每小時多少海里時,船從甲地到乙地所需的總費用最少?最少費用為多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點、為雙曲線的左、右焦點,過作垂直于軸的直線,在軸上方交雙曲線于點,且,圓的方程是.

1)求雙曲線的方程;

2)過雙曲線上任意一點作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;

3)過圓上任意一點作圓的切線交雙曲線、兩點,中點為,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,為了測量A、B處島嶼的距離,小海在D處觀測,A、B分別在D處的北偏西15°、北偏東45°方向,再往正東方向行駛20海里至C處,觀測BC處的正北方向,AC處的北偏西45°方向,則A、B兩島嶼的距高為___________海里.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视