【題目】已知拋物線x2=4y的焦點F和點A(-1,8),點P為拋物線上一點,則|PA|+|PF|的最小值為( )
A. 16 B. 6 C. 12 D. 9
科目:高中數學 來源: 題型:
【題目】如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC為等邊三角形,AE=1,BD=2,CD與平面ABCDE所成角的正弦值為 .
(1)若F是線段CD的中點,證明:EF⊥平面DBC;
(2)求二面角D﹣EC﹣B的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知y=f(x)為二次函數,若y=f(x)在x=2處取得最小值﹣4,且y=f(x)的圖象經過原點,
(1)求f(x)的表達式;
(2)求函數在區間
上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C的對邊分別是a,b,c,已知c=6,sinA﹣sinC=sin(A﹣B).若1≤a≤6,則sinC的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4﹣1:幾何證明選講
如圖,已知PA是⊙O的切線,A是切點,直線PO交⊙O于B、C兩點,D是OC的中點,連接AD并延長交⊙O于點E,若PA=2 ,∠APB=30°.
(1)求∠AEC的大小;
(2)求AE的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某食品的保鮮時間t(單位:小時)與儲藏溫度x(單位:℃)滿足函數關系且該食品在4℃的保鮮時間是16小時.
已知甲在某日上午10時購買了該食品,并將其遺放在室外,且此日的室外溫度隨時間變化如圖所示.給出以下四個結論:
①該食品在6℃的保鮮時間是8小時;
②當x∈[﹣6,6]時,該食品的保鮮時間t隨著x增大而逐漸減少;
③到了此日13時,甲所購買的食品還在保鮮時間內;
④到了此日14時,甲所購買的食品已然過了保鮮時間.
其中,所有正確結論的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,且AC=BD,平面PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)在△PAD中,AP=2,AD=2 ,PD=4,三棱錐E﹣ACD的體積是
,求二面角D﹣AE﹣C的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線f(x)=ke﹣2x在點x=0處的切線與直線x﹣y﹣1=0垂直,若x1 , x2是函數g(x)=f(x)﹣|1nx|的兩個零點,則( )
A.1<x1x2<
B.<x1x2<1
C.2<x1x2<2
D.<x1x2<2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com