【題目】已知函數f(x)= sinωx+cosωx(ω>0)的圖象與x軸交點的橫坐標構成一個公差為
的等差數列,把函數f(x)的圖象沿x軸向左平移
個單位,得到函數g(x)的圖象.若在區間[0,π]上隨機取一個數x,則事件“g(x)≥
”發生的概率為( )
A.
B.
C.
D.
【答案】C
【解析】解:∵f(x)= sinωx+cosωx=2sin(ωx+
),
由題意知 =
,則T=π,∴ω=2,
∴f(x)=2sin(2x+ ),
把函數f(x)的圖象沿x軸向左平移 個單位,得g(x)=f(x+
)=2sin[2(x+
)+
]=2sin(2x+
)=2cos2x.
∵2cos2x≥ ,x∈[0,π],可得:cos2x
,解得:2x∈[0,
]
,所以x∈[0,
]
,
∴事件“g(x)≥ ”發生的概率為
=
;
故選:C.
【考點精析】本題主要考查了幾何概型和函數y=Asin(ωx+φ)的圖象變換的相關知識點,需要掌握幾何概型的特點:1)試驗中所有可能出現的結果(基本事件)有無限多個;2)每個基本事件出現的可能性相等;圖象上所有點向左(右)平移個單位長度,得到函數
的圖象;再將函數
的圖象上所有點的橫坐標伸長(縮短)到原來的
倍(縱坐標不變),得到函數
的圖象;再將函數
的圖象上所有點的縱坐標伸長(縮短)到原來的
倍(橫坐標不變),得到函數
的圖象才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】(本小題滿分10分)
(2017天津)電視臺播放甲、乙兩套連續劇,每次播放連續劇時,需要播放廣告.已知每次播放甲、乙兩套連續劇時,連續劇播放時長、廣告播放時長、收視人次如下表所示:
連續劇播放時長(分鐘) | 廣告播放時長(分鐘) | 收視人次(萬) | |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
已知電視臺每周安排的甲、乙連續劇的總播放時間不多于600分鐘,廣告的總播放時間不少于30分鐘,且甲連續劇播放的次數不多于乙連續劇播放次數的2倍.分別用,
表示每周計劃播出的甲、乙兩套連續劇的次數.
(1)用,
列出滿足題目條件的數學關系式,并畫出相應的平面區域;
(2)問電視臺每周播出甲、乙兩套連續劇各多少次,才能使收視人次最多?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,且橢圓上任意一點到左焦點的最大距離為
,最小距離為
.
(1)求橢圓的方程;
(2)過點的動直線
交橢圓
于
兩點,試問:在坐標平面上是否存在一個定點
,使得以線段
為直徑的圓恒過點
?若存在,求出點
的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且 a=2csinA
(1)確定角C的大。
(2)若c= ,且△ABC的面積為
,求a+b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
底面
,底面
是直角梯形,
,
,
是
上的一點.
(Ⅰ)求證:平面平面
;
(Ⅱ)如圖(1),若,求證:
平面
;
(Ⅲ)如圖(2),若是
的中點,
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從“充分不必要條件”“必要不充分條件”“充要條件”“既不充分也不必要條件”中,選出適當的一種填空:
(1)記集合A={-1,p,2},B={2,3},則“p=3”是“A∩B=B”的__________________;
(2)“a=1”是“函數f(x)=|2x-a|在區間上為增函數”的________________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知矩形和菱形
所在平面互相垂直,如圖,其中
,
,
,點
是線段
的中點.
(Ⅰ)試問在線段上是否存在點
,使得直線
平面
?若存在,請證明
平面
,并求出
的值;若不存在,請說明理由;
(Ⅱ)求二面角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com