【題目】已知函數f(x)= ,則y=f(x)的圖象大致為( )
A.
B.
C.
D.
【答案】A
【解析】解:令g(x)=x﹣lnx﹣1,則 ,
由g'(x)>0,得x>1,即函數g(x)在(1,+∞)上單調遞增,
由g'(x)<0得0<x<1,即函數g(x)在(0,1)上單調遞減,
所以當x=1時,函數g(x)有最小值,g(x)min=g(0)=0,
于是對任意的x∈(0,1)∪(1,+∞),有g(x)≥0,故排除B、D,
因函數g(x)在(0,1)上單調遞減,則函數f(x)在(0,1)上遞增,故排除C,
故選A.
【考點精析】根據題目的已知條件,利用函數的圖象和利用導數研究函數的單調性的相關知識可以得到問題的答案,需要掌握函數的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數值;一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減.
科目:高中數學 來源: 題型:
【題目】在直角坐標系內,已知 是圓
上一點,折疊該圓兩次使點
分別與圓上不相同的兩點(異于點
)重合,兩次的折痕方程分別為
和
,若圓
上存在點
,使
,其中
的坐標分別為
,則實數
的取值集合為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線l1 , l2分別是函數f(x)=sinx,x∈[0,π]圖象上點P1 , P2處的切線,l1 , l2垂直相交于點P,且l1 , l2分別與y軸相交于點A,B,則△PAB的面積為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線x2=4y焦點為F,點A,B,C為該拋物線上不同的三點,且滿足 +
+
=
.
(1)求|FA|+|FB|+|FC|;
(2)若直線AB交y軸于點D(0,b),求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時間后,記錄他們日平均增加的睡眠時間(單位:h).試驗的觀測結果如下:
服用A藥的20位患者日平均增加的睡眠時間:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B藥的20位患者日平均增加的睡眠時間:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5
(1)分別計算兩組數據的平均數,從計算結果看,哪種藥的療效更好?
(2)根據兩組數據繪制莖葉圖,從莖葉圖看,哪種藥的療效更好?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在的直線上.
(1)求AD邊所在直線的方程;
(2)求矩形ABCD外接圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】調查了某地若干戶家庭的年收入x(單位:萬元)和年飲食支出y(單位:萬元),調查顯示年收入x與年飲食支出y具有線性相關關系,并由調查數據得到y對x的回歸直線方程: =0. 254x+0. 321. 由回歸直線方程可知,家庭年收入每增加1萬元,年飲食支出平均增加萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com