精英家教網 > 高中數學 > 題目詳情

設函數
(1)求函數的單調遞增區間;
(2)若關于的方程在區間內恰有兩個相異的實根,求實數的取值范圍.

(1)函數的單調遞增區間為;(2)的取值范圍是

解析試題分析:(1)確定出函數的定義域是解決本題的關鍵,利用導數作為工具,求出該函數的單調遞增區間即為的取值區間;(2)方法一:利用函數思想進行方程根的判定問題是解決本題的關鍵.構造函數,研究構造函數的性質尤其是單調性,列出該方程有兩個相異的實根的不等式組,求出實數的取值范圍.方法二:先分離變量再構造函數,利用函數的導數為工具研究構造函數的單調性,根據題意列出關于實數的不等式組進行求解.本題將方程的根的問題轉化為函數的圖象交點問題,是解決問題的關鍵.
試題解析:(1)函數的定義域為,          1分
,            2分
,則使的取值范圍為
故函數的單調遞增區間為.              4分
(2)方法1:∵,
.        6分

,且,

在區間內單調遞減,在區間內單調遞增,            9分
在區間內恰有兩個相異實根 12分
解得:
綜上所述,的取值范圍是.         14分
方法2:∵,
.        6分
,

,且,

在區間內單調遞增,在區間內單調遞減.     9分
,,
,
在區間內恰有兩個相異實根.        12分

綜上所述,的取值范圍是.         14分
考點:函數與方程的綜合運用;利用導數研究函數的單調性.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

求垂直于直線2x-6y+1=0并且與曲線yx3+3x2-5相切的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2 (x≠0,a∈R).
(1)判斷函數f(x)的奇偶性;
(2)若f(x)在區間[2,+∞)上是增函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2+xsinx+cosx.
(1)若曲線y=f(x)在點(a,f(a))處與直線y=b相切,求a與b的值;
(2)若曲線y=f(x)與直線y=b有兩個不同交點,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)若存在單調遞減區間,求實數的取值范圍;
(2)若,求證:當時,恒成立;
(3)設,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=aln(2x+1)+bx+1.
(1)若函數yf(x)在x=1處取得極值,且曲線yf(x)在點(0,f(0))處的切線與直線2xy-3=0平行,求a的值;
(2)若b,試討論函數yf(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax2-(2a+1)x+2ln x,a∈R.
(1)若曲線yf(x)在x=1和x=3處的切線互相平行,求a的值;
(2)求f(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax3x2cxd(a,c,d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=(ax2bxc)exf(0)=1,f(1)=0.
(1)若f(x)在區間[0,1]上單調遞減,求實數a的取值范圍;
(2)當a=0時,是否存在實數m使不等式2f(x)+4xexmx+1≥-x2+4x+1對任意x∈R恒成立?若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视