【題目】通過研究學生的學習行為,心理學家發現,學生接受能力依賴于老師引入概念和描述問題所用的時間,講座開始時,學生的興趣激增,中間有一段不太長的時間,學生的興趣保持理想的狀態,隨后學生的注意力開始分散,分析結果和實驗表明,用表示學生掌握和接受概念的能力(
的值越大,表示接受能力越強),
表示提出和講授概念的時間(單位:分),可以有以下公式:
.
(1)開講多少分鐘后,學生的接受能力最強?能維持多少分鐘?
(2)開講5分鐘與開講20分鐘比較,學生的接受能力何時強一些?
(3)一個數學難題,需要55的接受能力以及13分鐘的時間,老師能否及時在學生一直達到所需接受能力的狀態下講授完這個難題?
【答案】(1)能維持6分鐘時間(2)開講5分鐘時學生的接受能力比開講20分鐘時要強一些(3)來不及
【解析】試題分析:(1)當時,函數為二次函數,對稱軸為
,開口向下故在這個區間上單調遞增,當
時取得最大值為
.當
時,函數為減函數,且
,故開講
分鐘后達到最大值,維持
分鐘.(2)通過比較
的值可知開講
分鐘時接受能力更強.(3)在區間
上分別令函數值為
,求得對應的時間,作差后可知老師來不及講授完.
試題解析:
(1)當時,
故在
時遞增,最大值為
當時,
當時,
為減函數,且
因此,開講10分鐘后,學生達到最強接受能力(為59),能維持6分鐘時間.
(2)
故開講5分鐘時學生的接受能力比開講20分鐘時要強一些
(3)當時,令
,解得
或20(舍)
當時,令
,解得
因此學生達到(含超過)55的接受能力的時間為(分)
老師來不及在學生一直達到所需接受能力的狀態下講授完這個難題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2-ax+ln(x+1)(a∈R).
(1)當a=2時,求函數f(x)的極值點;
(2)若函數f(x)在區間(0,1)上恒有f′(x)>x,求實數a的取值范圍;
(3)已知a<1,c1>0,且cn+1=f′(cn)(n=1,2,…),證明數列{cn}是單調遞增數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節對同一類的,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或
作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,
兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=x2+ax+b(a,b∈R)的定義域為[-1,1],且|f(x)|的最大值為M.
(1)證明:|1+b|≤M;
(2)證明:M≥.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
(1)由折線圖看出,可用線性回歸模型擬合與
的關系,請用相關系數加以說明;
(2)建立關于
的回歸方程(系數精確到0.01),預測2016年我國生活垃圾無害化處理量.
參考數據: ,
,
,
.
參考公式:相關系數
回歸方程中,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓的上、下頂點分別為
,
,右焦點為
,點
在橢圓
上,且
.
(1)若點坐標為
,求橢圓
的方程;
(2)延長交橢圓
與點
,若直線
的斜率是直線
的斜率的3倍,求橢圓
的離心率;
(3)是否存在橢圓,使直線
平分線段
?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
,
)為奇函數,且相鄰兩對稱軸間的距離為
.
(1)當時,求
的單調遞減區間;
(2)將函數的圖象沿
軸方向向右平移
個單位長度,再把橫坐標縮短到原來的
(縱坐標不變),得到函數
的圖象.當
時,求函數
的值域.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com