【題目】已知集合
⑴求實數的值;
⑵若,求集合
。
【答案】⑴;⑵
【解析】試題分析:(1)由為
的子集,得到
中所有元素都屬于
,列出關于
的方程,方程解方程即可得到
的值;(2)將
的值代入確定出
與
,根據
,得到
中必然含有元素
,寫出集合
的所有可能情況即可.
試題解析:(1)∵集合A={1,3,x2},B={1,2-x},且BA,
∴2-x=3或2-x=x2,
解得:x=-1或x=1或-2,
經檢驗x=1或-1不合題意,舍去,
則x=-2;
(2)∵A={1,3,4},B={1,4},B∪C=A,
∴C={1,3,4}或{3}或{1,3}或{3,4}.
【名師點晴】研究集合問題,一定要抓住元素,看元素應滿足的屬性.研究兩集合的關系時,關鍵是將兩集合的關系轉化為元素間的關系,本題⑵實質求滿足條件元素組成的集合. 本題需注意檢驗集合的元素是否滿足互異性,否則容易出錯.
科目:高中數學 來源: 題型:
【題目】通過研究學生的學習行為,心理學家發現,學生接受能力依賴于老師引入概念和描述問題所用的時間,講座開始時,學生的興趣激增,中間有一段不太長的時間,學生的興趣保持理想的狀態,隨后學生的注意力開始分散,分析結果和實驗表明,用表示學生掌握和接受概念的能力(
的值越大,表示接受能力越強),
表示提出和講授概念的時間(單位:分),可以有以下公式:
.
(1)開講多少分鐘后,學生的接受能力最強?能維持多少分鐘?
(2)開講5分鐘與開講20分鐘比較,學生的接受能力何時強一些?
(3)一個數學難題,需要55的接受能力以及13分鐘的時間,老師能否及時在學生一直達到所需接受能力的狀態下講授完這個難題?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,A是拋物線上橫坐標為4,且位于x軸上方的點,A到拋物線準線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點為M.
(1)求拋物線的方程;
(2)以M為圓心,MB為半徑作圓M,當K(m,0)是x軸上一動點時,討論直線AK與圓M的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①若(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a1|+|a2|+|a3|+|a4|+|a5|=32
②α,β,γ是三個不同的平面,則“γ⊥α,γ⊥β”是“α∥β”的充分條件
③已知sin=
,則cos
=
.其中正確命題的個數為( )
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+
x2+
x(0<a<1,x∈R).若對于任意的三個實數x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】東莞市某高級中學在今年4月份安裝了一批空調,關于這批空調的使用年限(單位:年,
)和所支出的維護費用
(單位:萬元)廠家提供的統計資料如下:
(1)請根據以上數據,用最小二乘法原理求出維護費用關于
的線性回歸方程
;
(2)若規定當維護費用超過13.1萬元時,該批空調必須報廢,試根據(1)的結論求該批空調使用年限的最大值.
參考公式:最小二乘估計線性回歸方程中系數計算公式:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
)在
上的最小值為
,當把
的圖象上所有的點向右平移
個單位后,得到函數
的圖象.
(1)求函數的解析式;
(2)在△中,角
,
,
對應的邊分別是
,
,
,若函數
在
軸右側的第一個零點恰為
,
,求△
的面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在數列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差數列,bn,an+1,bn+1成等比數列{n∈N+}.
求a2,a3,a4及b2,b3,b4,由此猜測{an},{bn}的通項公式,并證明你的結論;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com