【題目】東莞市某高級中學在今年4月份安裝了一批空調,關于這批空調的使用年限(單位:年,
)和所支出的維護費用
(單位:萬元)廠家提供的統計資料如下:
(1)請根據以上數據,用最小二乘法原理求出維護費用關于
的線性回歸方程
;
(2)若規定當維護費用超過13.1萬元時,該批空調必須報廢,試根據(1)的結論求該批空調使用年限的最大值.
參考公式:最小二乘估計線性回歸方程中系數計算公式:
,
科目:高中數學 來源: 題型:
【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
(1)由折線圖看出,可用線性回歸模型擬合與
的關系,請用相關系數加以說明;
(2)建立關于
的回歸方程(系數精確到0.01),預測2016年我國生活垃圾無害化處理量.
參考數據: ,
,
,
.
參考公式:相關系數
回歸方程中,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】比較下列各組中兩個值的大小 :
(1)ln0.3,ln2; (2)loga3.1,loga5.2(a>0,且a≠1);
(3)log30.2,log40.2; (4)log3π,logπ3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區間[2a,a+1]上不單調,求實數a的取值范圍;
(3)在區間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數m的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2015年12月,京津冀等地數城市指數“爆表”,北方此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關,現采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與
的數據如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
車流量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點圖知與
具有線性相關關系,求
關于
的線性回歸方程;
(2)(i)利用(1)所求的回歸方程,預測該市車流量為8萬輛時的濃度;
(ii)規定:當一天內的濃度平均值在
內,空氣質量等級為優;當一天內
的濃度平均值在
內,空氣質量等級為良,為使該市某日空氣質量為優或者為良,則應控制當天車流量在多少萬輛以內?(結果以萬輛為單位,保留整數)
參考公式:回歸直線的方程是,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
問題解決
如圖(1),將正方形紙片ABCD折疊,使點B落在CD邊上一點E(不與點C、D重合),壓平后得到折痕MN.當時,求
的值.
類比歸納
在圖(1)中,若則
的值等于 ;若
則
的值等于 ;若
(n為整數),則
的值等于 .(用含
的式子表示)
聯系拓廣
如圖(2),將矩形紙片ABCD折疊,使點B落在CD邊上一點E(不與點C、D重合),壓平后得到折痕MN設,則
的值等
于 ▲ .(用含
的式子表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有3名男生,4名女生,在下列不同要求下,求不同的排列方法種數:
(1)選其中5人排成一排
(2)全體排成一排,甲不站在排頭也不站在排尾
(3)全體排成一排,男生互不相鄰
(4)全體排成一排,甲、乙兩人中間恰好有3人
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形的面積可無限逼近圓的面積,并創立了“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值
,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,其中
表示圓內接正多邊形的邊數,執行此算法輸出的圓周率的近似值依次為 ( )
(參考數據: )
A. 2.598,3,3.1048 B. 2.598,3,3.1056
C. 2.578,3,3.1069 D. 2.588,3,3.1108
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com