【題目】如圖,四棱錐S﹣ABCD中,M是SB的中點,AB∥CD,BC⊥CD,且AB=BC=2,CD=SD=1,又SD⊥面SAB.
(1)證明:CD⊥SD;
(2)證明:CM∥面SAD;
(3)求四棱錐S﹣ABCD的體積.
【答案】(1)證明見解析 (2)證明見解析(3).
【解析】
(1)由平面
證得
,結合
,證得
(2)取的中點
,連接
,通過證明四邊形
是平行四邊形,證得
,由此證得
平面
.
(3)通過求,結合
,求得四棱錐
的體積.
(1)證明:由SD⊥面SAB,AB面SAB,
所以SD⊥AB,又AB∥CD,
所以CD⊥SD;
(2)取SA中點N,連接ND,NM,
則NM∥AB,且MN,AB∥CD,
所以NMCD是平行四邊形,
ND∥MC,且ND平面SAD,MC平面SAD,
所以CM∥面SAD;
(3)VS﹣ABCD:VS﹣ABD=SABCD:S△ABD=3:2,
過D作DH⊥AB,交于H,由題意得,BD=AD,
在Rt△DSA,Rt△DSB中,SA=SB2.
所以,,/span>
四棱錐S﹣ABCD的體積為:.
科目:高中數學 來源: 題型:
【題目】如圖所示,射線OA、OB分別與x軸正半軸成45°和30°角,過點P(1,0)作直線AB分別交OA、OB于A、B兩點,當AB的中點C恰好落在直線y=x上時,求直線AB的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設圓x2+y2+2x-15=0的圓心為A,直線l過點B(1,0)且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E.
(1)證明|EA|+|EB|為定值,并寫出點E的軌跡方程;
(2)設點E的軌跡為曲線C1,直線l交C1于M,N兩點,過B且與l垂直的直線與圓A交于P,Q兩點,求四邊形MPNQ面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】大豆,古稱菽,原產中國,在中國已有五千年栽培歷史。皖北多平原地帶,黃河故道土地肥沃,適宜種植大豆。2018年春,為響應中國大豆參與世界貿易的競爭,某市農科院積極研究,加大優良品種的培育工作。其中一項基礎工作就是研究晝夜溫差大小與大豆發芽率之間的關系。為此科研人員分別記錄了5天中每天100粒大豆的發芽數得如下數據表格:
科研人員確定研究方案是:從5組數據中選3組數據求線性回歸方程,再用求得的回歸方程對剩下的2組數據進行檢驗.
(1)求剩下的2組數據恰是不相鄰的2天數據的概率;
(2)若選取的是4月5日、6日、7日三天數據據此求關于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與實際數據的誤差絕對值均不超過1粒,則認為得到的線性回歸方程是可靠的,請檢驗(Ⅱ)中回歸方程是否可靠?
注:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某景區的各景點從2009年取消門票實行免費開放后,旅游的人數不斷地增加,不僅帶動了該市淡季的旅游,而且優化了旅游產業的結構,促進了該市旅游向“觀光、休閑、會展”三輪驅動的理想結構快速轉變.下表是從2009年至2018年,該景點的旅游人數(萬人)與年份
的數據:
第 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人數 | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
該景點為了預測2021年的旅游人數,建立了與
的兩個回歸模型:
模型①:由最小二乘法公式求得與
的線性回歸方程
;
模型②:由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近.
(1)根據表中數據,求模型②的回歸方程.(
精確到個位,
精確到0.01).
(2)根據下列表中的數據,比較兩種模型的相關指數,并選擇擬合精度更高、更可靠的模型,預測2021年該景區的旅游人數(單位:萬人,精確到個位).
回歸方程 | ① | ② |
30407 | 14607 |
參考公式、參考數據及說明:
①對于一組數據,其回歸直線
的斜率和截距的最小二乘法估計分別為
.②刻畫回歸效果的相關指數
;③參考數據:
,
.
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設△ABC的內角A,B,C所對的邊長分別為a,b,c,且滿足a2+c2-b2=ac.
(1)求角B的大小;
(2)若2bcos A=(ccosA+acosC),BC邊上的中線AM的長為
,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數圖象上不同兩點
,
處切線的斜率分別是
,
規定
(
為線段
的長度)叫做曲線
在點
與
之間的“平方彎曲度”,給出以下命題:
①函數圖象上兩點
與
的橫坐標分別為1和2,則
;
②存在這樣的函數,圖象上任意兩點之間的“平方彎曲度”為常數;
③設點,
是拋物線
上不同的兩點,則
;
④設曲線(
是自然對數的底數)上不同兩點
,
,且
,則
的最大值為
.
其中真命題的序號為__________(將所有真命題的序號都填上)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com