【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面為正三角形,側棱垂直底面,AB=4,AA1=6,若E,F分別是棱BB1 , CC1上的點,且BE=B1E,C1F= CC1 , 則異面直線A1E與AF所成角的余弦值為( )
A.
B.
C.
D.
【答案】D
【解析】解以C為原點,CA為x軸,在平面ABC中過作AC的垂線為y軸,CC1為z軸,建立空間直角坐標系, ∵在三棱柱ABC﹣A1B1C1中,底面為正三角形,側棱垂直底面,AB=4,AA1=6,
E,F分別是棱BB1 , CC1上的點,且BE=B1E,C1F= CC1 ,
∴A1(4,0,6),E(2,2 ,3),F(0,0,4),A(4,0,0),
=(﹣2,2
,﹣3),
=(﹣4,0,4),
設異面直線A1E與AF所成角所成角為θ,
則cosθ= =
=
.
∴異面直線A1E與AF所成角的余弦值為 .
故選:D.
以C為原點,CA為x軸,在平面ABC中過作AC的垂線為y軸,CC1為z軸,建立空間直角坐標系,利用向量法能求出異面直線A1E與AF所成角的余弦值.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中xOy中,已知曲線E經過點P(1, ),其參數方程為
(α為參數),以原點O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求曲線E的極坐標方程;
(2)若直線l交E于點A、B,且OA⊥OB,求證: 為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某次數學測試之后,數學組的老師對全校數學總成績分布在[105,135)的n名同學的19題成績進行了分析,數據整理如下:
組數 | 分組 | 19題滿分人數 | 19題滿分人數占本組人數比例 |
第一組 | [105,110] | 15 | 0.3 |
第二組 | [110,115) | 30 | 0.3 |
第三組 | [115,120) | x | 0.4 |
第四組 | [120,125) | 100 | 0.5 |
第五組 | [125,130) | 120 | 0.6 |
第六組 | [130,135) | 195 | y |
(Ⅰ)補全所給的頻率分布直方圖,并求n,x,y的值;
(Ⅱ)現從[110,115)、[115,120)兩個分數段的19題滿分的試卷中,按分層抽樣的方法抽取9份進行展出,并從9份試卷中選出兩份作為優秀試卷,優秀試卷在[115,120)中的分數記為ξ,求隨機變量ξ的分布列及期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的公差d≠0,Sn為其前n項和,若a2 , a3 , a6成等比數列,且a10=﹣17,則 的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=alnx﹣ax﹣3(a∈R).
(Ⅰ)求函數f(x)的單調區間;
(Ⅱ)若函數y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數g(x)=x3+x2(f'(x)+ )在區間(t,3)上總不是單調函數,求m的取值范圍;
(Ⅲ)求證: ×
×
×…×
<
(n≥2,n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來我國電子商務行業迎來蓬勃發展新機遇,2016年雙11期間,某網絡購物平臺推銷了A,B,C三種商品,某網購者決定搶購這三種商品,假設該名網購者都參與了A,B,C三種商品的搶購,搶購成功與否相互獨立,且不重復搶購同一種商品,對A,B,C三件商品搶購成功的概率分別為a,b, ,已知三件商品都被搶購成功的概率為
,至少有一件商品被搶購成功的概率為
.
(1)求a,b的值;
(2)若購物平臺準備對搶購成功的A,B,C三件商品進行優惠減免,A商品搶購成功減免2百元,B商品搶購成功減免4比百元,C商品搶購成功減免6百元.求該名網購者獲得減免總金額(單位:百元)的分別列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|sinx|(x∈[﹣π,π]),g(x)=x﹣2sinx(x∈[﹣π,π]),設方程f(f(x))=0,f(g(x))=0,g(g(x))=0的實根的個數分別為m,n,t,則m+n+t=( )
A.9
B.13
C.17
D.21
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com