【題目】已知極點與直角坐標系的原點重合,極軸與軸的正半軸重合,曲線
的極坐標方程是
,直線
的參數方程是
(
為參數).
(1)若,
是圓
上一動點,求點
到直線
的距離
的最小值和最大值;
(2)直線與
關于原點對稱,且直線
截曲線
的弦長等于
,求
的值.
科目:高中數學 來源: 題型:
【題目】每年的3月12日是植樹節,某公司為了動員職工積極參加植樹造林,在植樹節期間開展植樹有獎活動,設有甲、乙兩個摸獎箱,每位植樹者植樹每滿30棵獲得一次甲箱內摸獎機會,植樹每滿50棵獲得一次乙箱內摸獎機會,每箱內各有10個球(這些球除顏色外全相同),甲箱內有紅、黃、黑三種顏色的球,其中個紅球,
個黃球,5個黑球,乙箱內有4個紅球和6個黃球,每次摸一個球后放回原箱,摸得紅球獎100元,黃球獎50元,摸得黑球則沒有獎金.
(1)經統計,每人的植樹棵數服從正態分布
,若其中有200位植樹者參與了抽獎,請估計植樹的棵數
在區間
內并中獎的人數(結果四舍五入取整數);
附:若,則
,
.
(2)若,某位植樹者獲得兩次甲箱內摸獎機會,求中獎金額
(單位:元)的分布列;
(3)某人植樹100棵,有兩種摸獎方法,
方法一:三次甲箱內摸獎機會;
方法二:兩次乙箱內摸獎機會;
請問:這位植樹者選哪一種方法所得獎金的期望值較大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,斜三棱柱中,
是邊長為2的正三角形,
為
的中點,
平面
,點
在
上,
,
為
與
的交點,且
與平面
所成的角為
.
(1)求證:平面
;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖1是某高架橋箱梁的橫截面,它由上部路面和下部支撐箱兩部分組成.如圖2,路面寬度,下部支撐箱CDEF為等腰梯形(
),且
.為了保證承重能力與穩定性,需下部支撐箱的面積為
,高度為2m且
,若路面AB.側邊CF和DE,底部EF的造價分別為4a千元/m,5a千元/m,6a千元/m(a為正常數),
.
(1)試用θ表示箱梁的總造價y(千元);
(2)試確定cosθ的值,使總造價最低?并求最低總造價.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在長方體中,
是
的中點,點
是
上一點,
,
,
.動點
在上底面
上,且滿足三棱錐
的體積等于1,則直線
與
所成角的正切值的最大值為( )
A.B.
C.
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】斜率為的直線
過拋物線
:
的焦點
,且與拋物線
交于
,
兩點.
(1)設點在笫一象限,過
作拋物線
的準線的垂線,
為垂足,且
,求點
的坐標;
(2)過且與
垂直的直線
與圓
:
交于
,
兩點,若
與
面積之和為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校擬從甲、乙兩名同學中選一人參加疫情知識問答競賽,于是抽取了甲、乙兩人最近同時參加校內競賽的十次成績,將統計情況繪制成如圖所示的折線圖.根據該折線圖,下面結論正確的是( )
A.甲、乙成績的中位數均為7
B.乙的成績的平均分為6.8
C.甲從第四次到第六次成績的下降速率要大于乙從第四次到第五次的下降速率
D.甲的成績的方差小于乙的成績的方差
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】農歷五月初五是端午節,民間有吃粽子的習慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節大家都會品嘗的食品,傳說這是為了紀念戰國時期楚國大臣、愛國主義詩人屈原,如圖所示,平行四邊形形狀的紙片是由六個邊長為的正三角形構成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為______;若該六面體內有一球,則該球體積的最大值為______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com