精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系中,直線的參數方程為t為參數).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為.

1)求圓C的直角坐標方程及直線的斜率;

2)直線與圓C交于M,N兩點,中點為Q,求Q點軌跡的直角坐標方程.

【答案】(1)圓C的直角坐標方程為,直線的斜率為(2)Q點的軌跡方程為,

【解析】

1)直接利用轉換關系式,把參數方程、極坐標方程和直角坐標方程之間進行轉換;

2)利用中點的坐標公式化簡得,進而可得,再求得的范圍即可得到結論.

1)由,

即圓C的直角坐標方程為.

由直線的參數方程可得,故直線的斜率為1.

2)設,,中點,將MN代入圓方程得:

①,

②,

-②得:,

化簡得

因為直線的斜率為1,所以上式可化為

代入圓的方程,解得

所以Q點的軌跡方程為,.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列命題:

①函數的圖象關于軸對稱的充要條件是,;

②已知是等差數列的前項和,若,則;

③函數與函數的圖象關于直線對稱;

④對于任意兩條異面直線,都存在無窮多個平面與這兩條異面直線所成的角相等.

其中正確的命題有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在極坐標系中,O為極點,點在曲線上,直線l過點且與垂直,垂足為P.

1)當時,求l的極坐標方程;

2)當MC上運動且P在線段OM上時,求P點軌跡的極坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知梯形中,,,四邊形為矩形,,平面平面

Ⅰ)求證:平面;

Ⅱ)求平面與平面所成銳二面角的余弦值;

Ⅲ)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年遼寧省正式實施高考改革.新高考模式下,學生將根據自己的興趣、愛好、學科特長和高校提供的“選考科目要求”進行選課.這樣學生既能尊重自己愛好、特長做好生涯規劃,又能發揮學科優勢,進而在高考中獲得更好的成績和實現自己的理想.考改實施后,學生將在高二年級將面臨著的選課模式,其中“3”是指語、數、外三科必學內容,“1”是指在物理和歷史中選擇一科學習,“2”是指在化學、生物、地理、政治四科中任選兩科學習.某校為了更好的了解學生對“1”的選課情況,學校抽取了部分學生對選課意愿進行調查,依據調查結果制作出如下兩個等高堆積條形圖:根據這兩幅圖中的信息,下列哪個統計結論是不正確的(

A.樣本中的女生數量多于男生數量

B.樣本中有學物理意愿的學生數量多于有學歷史意愿的學生數量

C.樣本中的男生偏愛物理

D.樣本中的女生偏愛歷史

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,直線的參數方程為t為參數).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為.

1)求圓C的直角坐標方程及直線的斜率;

2)直線與圓C交于M,N兩點,中點為Q,求Q點軌跡的直角坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市一中學高三年級統計學生的最近20次數學周測成績(滿分150分),現有甲乙兩位同學的20次成績如莖葉圖所示:

1)根據莖葉圖求甲乙兩位同學成績的中位數,并據此判斷甲乙兩位同學的成績誰更好?

2)將同學乙的成績的頻率分布直方圖補充完整;

3)現從甲乙兩位同學的不低于140分的成績中任意選出2個成績,設選出的2個成績中含甲的成績的個數為,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(數學文卷·2017屆重慶十一中高三12月月考第16題) 現介紹祖暅原理求球體體積公式的做法:可構造一個底面半徑和高都與球半徑相等的圓柱,然后在圓柱內挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,用這樣一個幾何體與半球應用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎上,解答以下問題:已知橢圓的標準方程為 ,將此橢圓繞y軸旋轉一周后,得一橄欖狀的幾何體(圖2),其體積等于______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點,且

1)求證:平面;

2)求二面角的余弦值;

3)設為棱上的點(不與,重合),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视