【題目】狄利克雷函數是高等數學中的一個典型函數,若,則稱
為狄利克雷函數.對于狄利克雷函數
,給出下面4個命題:①對任意
,都有
;②對任意
,都有
;③對任意
,都有
,
;④對任意
,都有
.其中所有真命題的序號是( )
A. ①④ B. ②③ C. ①②③ D. ①③④
【答案】D
【解析】①當x∈Q,則f(x)=1,f(1)=1,則[f(x)]=1,當x為無理數時,則f(x)=0,f(0)=1,則[f(x)]=1,即對任意x∈R,都有f[f(x)]=1,故①正確,②當x∈Q,則-x∈Q,則f(-x)=1,f(x)=1,此時f(-x)=f(x),當x為無理數時,則-x是無理數,則f(-x)=0,f(x)=0,此時f(-x)=f(x),即恒有f(-x)=f(x),即函數f(x)是偶函數,故②錯誤,③當是無理數時,
是無理數,所以
,當
是有理數時,
是有理數,所以
,故③正確,④∵f(x)≥0恒成立,∴對任意a,b∈(-∞,0),都有
,故④正確,故正確的命題是①③④,故選D.
科目:高中數學 來源: 題型:
【題目】經統計某射擊運動員隨機命中的概率可視為,為估計該運動員射擊4次恰好命中3次的概率,現采用隨機模擬的方法,先由計算機產生0到9之間取整數的隨機數,用0,1,2 沒有擊中,用3,4,5,6,7,8,9 表示擊中,以 4個隨機數為一組, 代表射擊4次的結果,經隨機模擬產生了20組隨機數:
7525,0293,7140,9857,0347,4373,8638,7815,1417,5550
0371,6233,2616,8045,6011,3661,9597,7424,7610,4281
根據以上數據,則可估計該運動員射擊4次恰好命中3次的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個人有n把鑰匙,其中只有一把可以打開房門,他隨意的進行試開,若試開過的鑰匙放在一邊,試開次數X為隨機變量,則P(X=k)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數分別為2個、3個、4個,乙袋中紅色、黑色、白色小球的個數均為3個,某人用左右手分別從甲、乙兩袋中取球.
(1)若左右手各取一球,問兩只手中所取的球顏色不同的概率是多少?
(2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球的成功取法次數為X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠的A、B、C三個不同車間生產同一產品的數量(單位:件)如表所示.質檢人員用分層抽樣的方法從這些產品中共抽取6件樣品進行檢測.
車間 | A | B | C |
數量 | 50 | 150 | 100 |
(1)求這6件樣品中來自A、B、C各車間產品的數量;
(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件商品來自相同車間的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=AD=2,BC=1,CD= .
(1)求證:平面PQB⊥平面PAD;
(2)若PM=3MC,求二面角M﹣BQ﹣C的大。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com