【題目】設為整數,若對任意的
,不等式
恒成立,則
的最大值是__________.
【答案】1
【解析】
由題意先代入x=1求得a的范圍,要滿足題意,則a是必要條件,又
為整數,只需再驗證a=1時,不等式恒成立即可,構造函數g(x)
,x∈
,通過求導求得最小值,證明結論成立.
由題意對任意的,不等式
恒成立,則x=1時,不等式
也成立,
代入x=1得e+3,又
為整數,則a
,這是滿足題意的一個必要條件,又
為整數,
只需驗證a=1時,對任意的,不等式
恒成立,
即證,變形為
對任意的
恒成立,
令g(x),x∈
,
則g′(x),在(0,1)上小于0,在(1,
)上大于0,
故g(x)在(0,1)遞減,在(1,)遞增,∴g(x)
g(1)=3>0,
∴對任意的
恒成立,
故a=1滿足題意.
故答案為1.
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
為
邊上一點,
,
.
(1)證明:平面平面
.
(2)若,試問:
是否與平面
平行?若平行,求三棱錐
的體積;若不平行,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2,D為側棱AA1的中點.
(1)求異面直線DC1,B1C所成角的余弦值;
(2)求二面角B1-DC-C1的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在湖南師大附中的校園歌手大賽決賽中,有6位參賽選手(1號至6號)登臺演出,由現場的100位同學投票選出最受歡迎的歌手,各位同學須彼此獨立地在投票器上選出3位侯選人,其中甲同學是1號選手的同班同學,必選1號,另在2號至6號選手中隨機選2名;乙同學不欣賞2號選手,必不選2號,在其他5位選手中隨機選出3名;丙同學對6位選手的演唱沒有偏愛,因此在1號至6號選手中隨機選出3名.
(1)求同學甲選中3號且同學乙未選中3號選手的概率;
(2)設3號選手得到甲、乙、丙三位同學的票數之和為X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,
單調遞增,
,若對任意
,存在
,使得
成立,則稱
是
在
上的“追逐函數”.若
,則下列四個命題:①
是
在
上的“追逐函數”;②若
是
在
上的“追逐函數”,則
;③
是
在
上的“追逐函數”;④當
時,存在
,使得
是
在
上的“追逐函數”.其中正確命題的個數為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,過點
的直線與拋物線
相切,設第一象限的切點為
.
(1)求點的坐標;
(2)若過點的直線
與拋物線
相交于兩點
,圓
是以線段
為直徑的圓過點
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體ABCDEF中,四邊形ADEF為正方形,AD∥BC,AD⊥AB,AD=2BC=2.
(1)證明:平面ADEF⊥平面ABF.
(2)若平面ADEF⊥平面ABCD,二面角A-BC-E為30°,三棱錐A-BDF的外接球的球心為O,求異面直線OC與DF所成角的余弦值
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com