已知四棱錐的底面
是正方形,
底面
,
是
上的任意一點.
(1)求證:平面平面
;
(2)當時,求二面角
的大小.
(1)證明詳見解析;(2).
解析試題分析:(1)證明平面內的直線
垂直平面
內的兩條相交直線
,即可證明平面
平面
;(2)為方便計算,不妨設
,先以
為原點,
所在的直線分別為
軸建立空間直角坐標系,寫給相應點的坐標,然后分別求出平面
和平面
的一個法向量,接著計算出這兩個法向量夾角的余弦值,根據二面角的圖形與計算出的余弦值,確定二面角的大小即可.
試題解析:(1)底面
,所以
2分
底面是正方形,所以
4分
所以平面
又
平面
所以平面平面
5分
(2)證明:點為坐標原點,
所在的直線分別為
軸,建立空間直角坐標系,設
由題意得,
,
6分
,又
設平面的法向量為
,則
,令
,則
, 8分
,
設平面的法向量為
,則
,令
,則
10分
設二面角的平面角為
,則
.
顯然二面角的平面角為
為鈍角,所以
即二面角的大小為
12分.
考點:1.空間中的垂直關系;2.空間向量在解決空間角中的應用.
科目:高中數學 來源: 題型:解答題
在正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點,且滿足=
=
=
(如圖(1)),將△AEF沿EF折起到△
EF的位置,使二面角
EF
B成直二面角,連接
B、
P(如圖(2)).
(1)求證: E⊥平面BEP;
(2)求直線E與平面
BP所成角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在長方體ABCD-A1B1C1D1中,AA1=AD=1,E為CD的中點.
(1)求證:B1E⊥AD1.
(2)在棱AA1上是否存在一點P,使得DP∥平面B1AE?若存在,求AP的長;若不存在,說明理由.
(3)若二面角A-B1E-A1的大小為30°,求AB的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,是邊長為
的正方形,
平面
,
,
,
與平面
所成角為
.
(1)求證:平面
;
(2)求二面角的余弦值;
(3)設點是線段
上一個動點,試確定點
的位置,使得
平面
,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四邊形ABCD為矩形,PD⊥平面ABCD,PD∥QA,QA=AD=PD.
(1)求證:平面PQC⊥平面DCQ;
(2)若二面角Q-BP-C的余弦值為-,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,四棱錐SABCD的底面是正方形,每條側棱的長都是底面邊長的
倍,P為側棱SD上的點.
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PAC
D的大小;
(3)在(2)的條件下,側棱SC上是否存在一點E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com