【題目】如圖,在三棱柱ABC-A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D為AC的中點,AB⊥B1D.
(1)求證:平面ABB1A1⊥平面ABC;
(2)在線段CC1(不含端點)上,是否存在點E,使得二面角E-B1D-B的余弦值為-?若存在,求出
的值;若不存在,說明理由.
【答案】(1)見解析;(2)在線段CC1上存在點E,
【解析】試題分析:(1)根據面面垂直的判定定理先證明線面垂直OD⊥平面ABB1A1 然后再證明面面垂直(2)建立空間直角坐標系,求平面的法向量,利用向量法進行求解
解析:(1)證明 取AB的中點O,連接OD,OB1.因為B1B=B1A,所以OB1⊥AB.
又AB⊥B1D,OB1∩B1D=B1,OB1平面B1OD,B1D平面B1OD,
所以AB⊥平面B1OD,
因為OD平面B1OD,所以AB⊥OD.
由已知條件知,BC⊥BB1,
又OD∥BC,所以OD⊥BB1.
因為AB∩BB1=B,AB平面ABB1A1,BB1平面ABB1A1,
所以OD⊥平面ABB1A1.
因為OD平面ABC,所以平面ABB1A1⊥平面ABC.
(2)解 由(1)知OB,OD,OB1兩兩垂直,所以以O為坐標原點,,
,
的方向分別為x軸,y軸,z軸的正方向,|
|為單位長度1,建立如圖所示的空間直角坐標系,連接B1C.
由題設知,B1(0,0,),B(1,0,0),D(0,1,0),A(-1,0,0),C(1,2,0),C1(0,2,
),
∴=(0,1,-
),
=(1,0,-
),
=(-1,0,
),
=(1,2,-
),設
=λ
(0<λ<1),
由=
+
=(1-λ,2,
(λ-1)),設平面BB1D的法向量為m=(x1,y1,z1),
則得
令z1=1,則x1=y1=,
所以平面BB1D的法向量為m=(,
,1).
設平面B1DE的法向量為n=(x2,y2,z2),則
得
令z2=1,則x2=,y2=
,
所以平面B1DE的一個法向量n=(,
,1).
設二面角E-B1D-B的大小為θ,
則cosθ==
=-
.
解得λ=.
所以在線段CC1上存在點E,使得二面角E-B1D-B的余弦值為-,此時
=
.
科目:高中數學 來源: 題型:
【題目】已知函數(
),
.
(1)若,曲線
在點
處的切線與
軸垂直,求
的值;
(2)若,試探究函數
與
的圖象在其公共點處是否存在公切線.若存在,研究
值的個數;,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=在點(1,1)處的切線方程為x+y=2.
(1)求a,b的值;
(2)對函數f(x)定義域內的任一個實數x,不等式f(x)-<0恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,D,E,F分別為PC,AC,AB的中點.已知PA⊥AC,PA=6,BC=8,DF=5.
求證:(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】心理學家發現視覺和空間能力與性別有關,某數學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法抽取50名同學,給所有同學幾何和代數各一題,讓各位同學自由選擇一道題進行解答.統計情況如下表:(單位:人)
(1)能否據此判斷有的把握認為視覺和空間能力與性別有關?
(2)經過多次測試發現:女生甲解答一道幾何題所用的時間在5—7分鐘,女生乙解答一道幾何題所用的時間在6—8分鐘,現甲、乙兩人獨立解答同一道幾何題,求乙比甲先解答完的概率;
(3)現從選擇幾何題的8名女生中任意抽取兩人對她們的答題情況進行研究,記甲、乙兩名女生被抽到的人數為,求
的分布列及數學期望.
附表及公式
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某單位的食堂中,食堂每天以10元/斤的價格購進米粉,然后以4.4元/碗的價格出售,每碗內含米粉0.2斤,如果當天賣不完,剩下的米粉以2元/斤的價格賣給養豬場.根據以往統計資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進了80斤米粉,以(斤)(其中
)表示米粉的需求量,
(元)表示利潤.
(1)計算當天米粉需求量的平均數,并直接寫出需求量的眾數和中位數;
(2)估計該天食堂利潤不少于760元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年5月14日,第一屆“一帶一路”國際高峰論壇在北京舉行,為了解不同年齡的人對“一帶一路”關注程度,某機構隨機抽取了年齡在15-75歲之間的100人進行調查, 經統計“青少年”與“中老年”的人數之比為9:11
關注 | 不關注 | 合計 | |
青少年 | 15 | ||
中老年 | |||
合計 | 50 | 50 | 100 |
(1)根據已知條件完成上面的列聯表,并判斷能否有
的把握認為關注“一帶一路”是否和年齡段有關?
(2)現從抽取的青少年中采用分層抽樣的辦法選取9人進行問卷調查.在這9人中再選取3人進行面對面詢問,記選取的3人中關注“一帶一路”的人數為X,求X的分布列及數學期望.
附:參考公式,其中
臨界值表:
0.05 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com