【題目】我國計劃發射火星探測器,該探測器的運行軌道是以火星(其半徑)的中心
為一個焦點的橢圓.如圖,已知探測器的近火星點(軌道上離火星表面最近的點)
到火星表面的距離為
,遠火星點(軌道上離火星表面最遠的點)
到火星表面的距離為
.假定探測器由近火星點
第一次逆時針運行到與軌道中心
的距離為
時進行變軌,其中
分別為橢圓的長半軸、短半軸的長,求此時探測器與火星表面的距離(精確到
).
科目:高中數學 來源: 題型:
【題目】如圖1,一藝術拱門由兩部分組成,下部為矩形,
的長分別為
和
,上部是圓心為
的劣弧
,
.
(1)求圖1中拱門最高點到地面的距離;
(2)現欲以B點為支點將拱門放倒,放倒過程中矩形所在的平面始終與地面垂直,如圖2、圖3、圖4所示.設
與地面水平線
所成的角為
.記拱門上的點到地面的最大距離為
,試用
的函數表示
,并求出
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
已知雙曲線設過點
的直線l的方向向量
(1) 當直線l與雙曲線C的一條漸近線m平行時,求直線l的方程及l與m的距離;
(2) 證明:當>
時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了考察冰川的融化狀況,一支科考隊在某冰川山上相距8km的A、B兩點各建一個考察基地,視冰川面為平面形,以過A、B兩點的直線為x軸,線段AB的垂直平分線為y軸建立平面直角坐標系(圖4).考察范圍到A、B兩點的距離之和不超過10km的區域.
(I)求考察區域邊界曲線的方程:
(II)如圖4所示,設線段是冰川的部分邊界線(不考慮其他邊界),當冰川融化時,邊界線沿與其垂直的方向朝考察區域平行移動,第一年移動0.2km,以后每年移動的距離為前一年的2倍.問:經過多長時間,點A恰好在冰川邊界線上?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三個圓交于一點,又兩兩將于點
、
、
.以
為圓心的一個圓
與上述三個圓分別交于點
,
,
,其中,點
在不含點
的圓上,等等.又設
、
、
的外接圓交于一點
,
、
的外接圓交于一點
.證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】p:關于x的方程無解,q:
(
)
(1)若時,“
”為真命題,“
”為假命題,求實數a的取值范圍.
(2)當命題“若p,則q”為真命題,“若q,則p”為假命題時,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com