【題目】為了適應新高考改革,某校組織了一次新高考質量測評(總分100分),在成績統計分析中,抽取12名學生的成績以莖葉圖形式表示如圖,學校規定測試成績低于87分的為“未達標”,分數不低于87分的為“達標”.
(1)求這組數據的眾數和平均數;
(2)在這12名學生中從測試成績介于80~90之間的學生中任選2人,求至少有1人“達標”的概率.
【答案】(1)86,80.5;(2).
【解析】
(1)找出莖葉圖中出現次數最多的數為眾數,根據平均數公式,即可求得平均數;
(2)在被抽取的學生中,有2個“達標”學生,4個“未達標”學生,按達標和不達標兩類編號,列出從6人中任取2人的所有情況,統計出滿足條件的基本事件的個數,根據古典概型的概率公式,即可求解.
(1)這組數據的眾數為86;
平均數為.
(2)在被抽取的學生中,有2個“達標”學生,4個“未達標”學生,
將“達標”學生編號為,
,“未達標”學生編號為
,
,
,
,
則從6人中任取2人,有以下情況:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
.共15種.
其中符合條件的為,
,
,
,
,
,
,
,
,共9種.
故至少有1人“達標”的概率.
科目:高中數學 來源: 題型:
【題目】某城市在進行創建文明城市的活動中,為了解居民對“創文”的滿意程度,組織居民給活動打分(分數為整數.滿分為100分).從中隨機抽取一個容量為120的樣本.發現所有數據均在內.現將這些分數分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問題:
(1)算出第三組的頻數.并補全頻率分布直方圖;
(2)請根據頻率分布直方圖,估計樣本的眾數、中位數和平均數.(每組數據以區間的中點值為代表)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文成績某些分數段的人數(x)與數學成績相應分數段的人數(y)之比如下表所示,求數學成績在[50,90)之外的人數.
分數段 | [50,60) | [60,70) | [70,80) | [80,90) |
x∶y | 1∶1 | 2∶1 | 3∶4 | 4∶5 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將紅、黑、藍、白5張紙牌(其中白紙牌有2張)隨機分發給甲、乙、丙、丁4個人,每人至少分得1張,則下列兩個事件為互斥事件的是( )
A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”
B. 事件“甲分得1張紅牌”與事件“乙分得1張藍牌”
C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”
D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了紀念“一帶一路”倡議提出五周年,某城市舉辦了一場知識競賽,為了了解市民對“一帶一路”知識的掌握情況,從回收的有效答卷中按青年組和老年組各隨機抽取了40份答卷,發現成績都在內,現將成績按區間
,
,
,
,
進行分組,繪制成如下的頻率分布直方圖.
青年組
中老年組
(1)利用直方圖估計青年組的中位數和老年組的平均數;
(2)從青年組,
的分數段中,按分層抽樣的方法隨機抽取5份答卷,再從中選出3份答卷對應的市民參加政府組織的座談會,求選出的3位市民中有2位來自
分數段的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,已知菱形的對角線
交于點
,點
為線段
的中點,
,
,將三角形
沿線段
折起到
的位置,
,如圖2所示.
(Ⅰ)證明:平面
平面
;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,N為CD的中點,M是AC上一點.
(1)若M為AC的中點,求證:AD//平面BMN;
(2)若,平面
平面BCD,
,求直線AC與平面BMN所成的角的余弦值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com