【題目】在平面直角坐標系xoy中,已知中心在原點,焦點在x軸上的雙曲線C的離心率為,且雙曲線C與斜率為2的直線l相交,且其中一個交點為P(﹣3,0).
(1)求雙曲線C的方程及它的漸近線方程;
(2)求以直線l與坐標軸的交點為焦點的拋物線的標準方程.
【答案】(1);(2)
【解析】試題分析:(1)設出雙曲線方程,利用點在雙曲線以及雙曲線的離心率求解即可.
(2)求出直線與坐標軸的交點,然后利用拋物線的性質求解拋物線方程即可.
試題解析:(1)由題意,設雙曲線的方程為,∵點P(﹣3,0)在雙曲線上,∴a=3.∵雙曲線C的離心率為:
,∴
,∵c2=a2+b2,∴b=3,∴雙曲線的方程為:
,其漸近線方程為:y=±x.
(2)由題意,直線l的方程為y=2(x+3),即y=2x+6,直線l與坐標軸交點分別為F1(﹣3,0),F2(0,6),∴以F1(﹣2,0)為焦點的拋物線的標準方程為y2=﹣12x;以F2(0,4)為焦點的拋物線的標準方程為x2=24y.
科目:高中數學 來源: 題型:
【題目】某市積極倡導學生參與綠色環;顒,其中代號為“環保衛士—12369”的綠色環;顒有〗M對2014年1月—2014年12月(一年)內空氣質量指數進行監測,下表是在這一年隨機抽取的100天的統計結果:
指數API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
空氣質量 | 優 | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中重度污染 | 重度污染 |
天數 | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
(1)若某市某企業每天由空氣污染造成的經濟損失(單位:元)與空氣質量指數
(記為
)的關系為:
,在這一年內隨機抽取一天,估計該天經濟損失
元的概率;
(2)若本次抽取的樣本數據有30天是在供暖季節,其中有8天為重度污染,列聯表,并判斷是否有
的把握認為某市本年度空氣重度污染與供暖有關?
非重度污染 | 重度污染 | 合計 | |
供暖季 | |||
非供暖季節 | |||
合計 | 100 |
下面臨界值表供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為R的函數f(x)= 是奇函數,
(1)求實數a的值;
(2)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求實數k的取值范圍;
(3)設關于x的方程f(4x﹣b)+f(﹣2x+1)=0有實數根,求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,過
的左焦點
的直線
,直線
被圓
:
截得的弦長為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設的右焦點為
,在圓
上是否存在點
,滿足
,若存在,指出有幾個這樣的點(不必求出點的坐標);若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖:在四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=3,PA⊥底面ABCD,E是PC中點,F是AB中點.
(Ⅰ)求證:BE∥平面PDF;
(Ⅱ)求直線PD與平面PFB所成角的正切值;
(Ⅲ)求三棱錐P﹣DEF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知拋物線的頂點在坐標原點
,對稱軸為
軸,焦點為
,拋物線上一點
的橫坐標為
,且
.
(Ⅰ)求此拋物線的方程;
(Ⅱ)過點做直線
交拋物線
于
兩點,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com