精英家教網 > 高中數學 > 題目詳情

【題目】隨著經濟的發展,個人收入的提高,自201911日起,個人所得稅起征點和稅率的調整,調整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額,依照個人所得稅稅率表,調整前后的計算方法如下表:

個人所得稅稅率表(調整前)

個人所得稅稅率表(調整后)

免征額3500

免征額5000

級數

全月應納稅所得額

稅率(%

級數

全月應納稅所得額

稅率(%

1

不超過1500元部分

3

1

不超過3000元部分

3

2

超過1500元至4500元的部分

10

2

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

3

超過12000元至25000元的部分

20

某稅務部門在某公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數分布表:

收入(元)

人數

30

40

10

8

7

5

1)若某員工2月的工資、薪金等稅前收入為7500元時,請計算一下調整后該員工的實際收入比調整前增加了多少?

2)現從收入在的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識宣講員,用表示抽到作為宣講員的收入在元的人數,表示抽到作為宣講員的收入在元的人數,設隨機變量,求的分布列與數學期望.

【答案】1220;(2)見解析.

【解析】

1)分別計算出調整前和調整后繳納的個稅即可

2)可得組抽取3人,組抽取4的取值是,分別算出對應的概率即可

1)按調整前起征點應繳納個稅為:元,

調整后應納稅:元,

比較兩納稅情況,可知調整后少交個稅220元,

即個人的實際收入增加了220.

2)由題意,知組抽取3人,組抽取4人,

時,,當,,時,

,時,,所以的所有取值為:02,4

,

,

所求分布列為

0

2

4

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數有兩個極值點(為自然對數的底數).

(1)求實數的取值范圍;

(2)求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市為了解本市萬名學生的漢字書寫水平,在全市范圍內進行了漢字聽寫考試,發現其成績服從正態分布,現從某校隨機抽取了名學生,將所得成績整理后,繪制出如圖所示的頻率分布直方圖.

1)估算該校名學生成績的平均值(同一組中的數據用該組區間的中點值作代表);

2)求這名學生成績在內的人數;

3)現從該校名考生成績在的學生中隨機抽取兩人,該兩人成績排名(從高到低)在全市前名的人數記為,求的分布列和數學期望.

參考數據:若,則,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數aR.

1)若函數fx)在x1處的切線為y2x+b,求ab的值;

2)記gx)=fx+ax,若函數gx)在區間(0,)上有最小值,求實數a的取值范圍;

3)當a0時,關于x的方程fx)=bx2有兩個不相等的實數根,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年全國掀起了垃圾分類的熱潮,垃圾分類已經成為新時尚,同時帶動了垃圾桶的銷售.某垃圾桶生產和銷售公司通過數據分析,得到如下規律:每月生產只垃圾桶的總成本由固定成本和生產成本組成,其中固定成本為100萬元,生產成本為.

1)寫出平均每只垃圾桶所需成本關于的函數解析式,并求該公司每月生產多少只垃圾桶時,可使得平均每只所需成本費用最少?

2)假設該類型垃圾桶產銷平衡(即生產的垃圾桶都能賣掉),每只垃圾桶的售價為元,滿足.若當產量為15000只時利潤最大,此時每只售價為300元,試求的值.(利潤銷售收入成本費用)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的方程為,是橢圓上的一點,且在第一象限內,過且斜率等于-1的直線與橢圓交于另一點,點關于原點的對稱點為

(1)證明:直線的斜率為定值;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(1) 證明:PB∥平面AEC

(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為F,直線與拋物線C相切于點P,過點P作拋物線C的割線PQ,割線PQ與拋物線C的另一交點為QAPQ的中點.Ay軸的垂線與y軸交于點H,與直線l相交于點NM為線段AN的中點.

1)求拋物線C的方程;

2)求證:點M在拋物線C.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區公眾對車輛限行的態度,隨機抽查了人,將調查情況進行整理后制成下表:

年齡(歲)

頻數

贊成人數

)完成被調查人員的頻率分布直方圖.

)若從年齡在,的被調查者中各隨機選取人進行追蹤調查,求恰有人不贊成的概率.

)在在條件下,再記選中的人中不贊成車輛限行的人數為,求隨機變量的分布列和數學期望.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视