【題目】長軸長為的橢圓的中心在原點,其焦點
,
在
軸上,拋物線的頂點在原點
,對稱軸為
軸,兩曲線在第一象限內相交于點
, 且
,
的面積為3.
(1)求橢圓和拋物線的標準方程;
(2)過點作直線
分別與拋物線和橢圓交于
,
,若
,求直線
的斜率
.
科目:高中數學 來源: 題型:
【題目】若動點到定點
與定直線
的距離之和為
.
(1)求點的軌跡方程,并在答題卡所示位置畫出方程的曲線草圖;
(2)(理)記(1)得到的軌跡為曲線,問曲線
上關于點
對稱的不同點有幾對?請說明理由.
(3)(文)記(1)得到的軌跡為曲線,若曲線
上恰有三對不同的點關于點
對稱,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中語文、數學、外語三科為必考科目,每門科目滿分均為
分.另外考生還要依據想考取的高校及專業的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物
門科目中自選
門參加考試(
選
),每門科目滿分均為
分.為了應對新高考,某高中從高一年級
名學生(其中男生
人,女生
人)中,采用分層抽樣的方法從中抽取
名學生進行調查,其中,女生抽取
人.
(1)求的值;
(2)學校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對抽取到的名學生進行問卷調查(假定每名學生在“物理”和“地理”這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據調查結果得到的一個不完整的
列聯表,請將下面的
列聯表補充完整,并判斷是否有
的把握認為選擇科目與性別有關?說明你的理由;
選擇“物理” | 選擇“地理” | 總計 | |
男生 | |||
女生 | |||
總計 |
(3)在抽取到的名女生中,按(2)中的選課情況進行分層抽樣,從中抽出
名女生,再從這
名女生中抽取
人,設這
人中選擇“物理”的人數為
,求
的分布列及期望.附:
,
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,曲線由兩個橢圓
:
和橢圓
:
組成,當
成等比數列時,稱曲線
為“貓眼曲線”.
(1)若貓眼曲線過點
,且
的公比為
,求貓眼曲線
的方程;
(2)對于題(1)中的求貓眼曲線,任作斜率為
且不過原點的直線與該曲線相交,交橢圓
所得弦的中點為M,交橢圓
所得弦的中點為N,求證:
為與
無關的定值;
(3)若斜率為的直線
為橢圓
的切線,且交橢圓
于點
,
為橢圓
上的任意一點(點
與點
不重合),求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】市扶貧工作組從4男3女共7名成員中選出隊長1人,副隊長1人,普通隊員2人組成4人工作小組下鄉,要求工作組中至少有1名女同志,且隊長和副隊長不能都是女同志,共有______種安排方法.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設單調函數的定義域為
,值域為
,如果單調函數
使得函數
的值域也是
,則稱函數
是函數
的一個“保值域函數”.已知定義域為
的函數
,函數
與
互為反函數,且
是
的一個“保值域函數”,
是
的一個“保值域函數”,則
__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
,…,
是由
(
)個整數
,
,…,
按任意次序排列而成的數列,數列
滿足
(
),
,
,…,
是
,
,…,
按從大到小的順序排列而成的數列,記
.
(1)證明:當為正偶數時,不存在滿足
(
)的數列
.
(2)寫出(
),并用含
的式子表示
.
(3)利用,證明:
及
.(參考:
.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為正方形,
底面
,
,
為線段
的中點,若
為線段
上的動點(不含
).
(1)平面與平面
是否互相垂直?如果是,請證明;如果不是,請說明理由;
(2)求二面角的余弦值的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com